Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IQ
      • Verification IP
      • Static-Based Techniques
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Introduction to UVM
      • UVM Basics
      • Advanced UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Featured & On-Demand

      • Questa Verification IQ - April 11th
      • Continuous Integration
      • SystemVerilog Assertions
      • SoC Design & Functional Safety Flow
      • 2022 Functional Verification Study
      • Design Solutions as a Sleep Aid
      • CDC and RDC Assist
      • Formal and the Next Normal
      • Protocol and Memory Interface Verification
      • Webinar Calendar
    • On-Demand Library

      • Practical Flows for Continuous Integration
      • Lint vs Formal AutoCheck
      • The Three Pillars of Intent-Focused Insight
      • Formal Verification Made Easy
      • Fix FPGA Failures Faster
      • HPC Protocols & Memories
      • FPGA Design Challenges
      • High Defect Coverage
      • The Dog ate my RTL
      • Questa Lint & CDC
      • Complex Safety Architectures
      • Data Independence and Non-Determinism
      • Hierarchical CDC+RDC
      • All On-Demand Recordings
    • Recording Archive

      • Aerospace & Defense Tech Day
      • Exhaustive Scoreboarding
      • Improving Initial RTL Quality
      • CDC Philosophy
      • Hardware Emulation Productivity
      • Visualizer Debug Environment
      • Preparing for PCIe 6.0: Parts I & II
      • Automotive Functional Safety Forum
      • Siemens EDA Functional Verification
      • Improving Your SystemVerilog & UVM Skills
      • All Webinar Topics
    • Conferences & WRG

      • Industry Data & Surveys
      • DVCon 2023
      • DVCon 2022
      • DVCon 2021
      • Osmosis 2022
      • All Conferences
    • Siemens EDA Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • EDA Xcelerator Academy(Learning Services) Verification Training, Badging and Certification
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification IQ
      • Verification Horizons Blog
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - March 2023
      • Verification Horizons - December 2022
      • Verification Horizons - July 2022
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Academy News
      • Contact Us
    • Training

      • Learning @OneGlance (PDF)
      • SystemVerilog & UVM Classes
      • Siemens EDA Classes
  • Home
  • Verification Horizons
  • March 2014 | Volume 10, Issue 1

March 2014 | Volume 10, Issue 1

Verification Horizons - Tom Fitzpatrick, Editor

Verification Horizons Complete Issue:

  • Download  Verification Horizons - March 2014 | Volume 10, Issue 1 - Hi-Resolution Download - 12.5 MB

Verification Horizons Articles:

Whether It's Fixing a Boiler, or Getting to Tapeout, It's Productivity that Matters

by Tom Fitzpatrick, Editor and Verification Technologist, Mentor Graphics Corporation

As I write this, we're experiencing yet another winter storm here in New England. It started this morning, and the timing was fortuitous since my wife had scheduled a maintenance visit by the oil company to fix a minor problem with the pipes before it really started snowing heavily. While the kids were sleeping in due to school being cancelled, the plumber worked in our basement to make sure everything was working well. It turned out that he had to replace the water feeder valve on the boiler, which was preventing enough water from circulating in the heating pipes. Aside from being inefficient, this also caused the pipes to make a gurgling sound, which was the key symptom that led to the service call in the first place. As I see the snow piling up outside my window (6-8 inches and counting), it's easy to picture the disaster that this could have become had we not identified the problem early and gotten it fixed.

Don't Forget the Little Things That Can Make Verification Easier

by Stuart Sutherland, Sutherland HDL, Inc.

The little things engineers can do when coding RTL models can add up to a significant boost in verification productivity. A significant portion of SystemVerilog is synthesizable. Taken individually, these synthesizable RTL modeling constructs might seem insignificant, and, therefore, easy to overlook when developing RTL models. These "little things", however, are like getting free assertions embedded directly in the RTL code, some of which would be quite complex to write by hand. Using these SystemVerilog constructs in RTL modeling can reduce verification and debug time. This article presents several features that SystemVerilog adds to traditional Verilog RTL modeling that can help catch subtle RTL coding errors, and make verification easier and more efficient.

Taming Power Aware Bugs with Questa®

by Gaurav Jalan & Senthil Duraisamy, SmartPlay Technologies

The internet revolution has changed the way we share content and the mobile revolution has boosted this phenomenon in terms of content creation & consumption. Moving forward, the Internet of Things would further drive this explosion of data. As a result, the area and performance battle has taken a back seat and optimizing power consumption is at the forefront. Longer battery life for handhelds and devices running on coin cell batteries are the primary drivers for this change. Initiatives to reduce global energy consumption also play a vital role in promoting this further. Power consumption on silicon is a result of switching activity (dynamic power) and leakage (static power) with the later claiming prominence on lower process nodes. Functional profile of the devices targeting the Internet of Things e.g. sensors, suggest that there would be minimal switching activity throughout the day and leakage would be the main contributor towards power consumption if the circuit is ON all the time. Such products demand implementation of features like power shut off, multi voltage and voltage frequency scaling. Traditional HDLs (Hardware Design Languages) and simulators are alien to power on/off & voltage variations. There is a need for an additional scheme to describe the power intent of the design and a simulator to validate it. The IEEE 1801 UPF (Unified Power Format) standard defines the semantics to represent the low power features intended for a design. Questa is a simulator solution that enables verification of power aware designs. This article discusses how power aware simulations using Questa helped us identify power related bugs early in the design cycle.

Using Mentor Questa® for Pre-silicon Validation of IEEE 1149.1-2013 based Silicon Instruments

by CJ Clark & Craig Stephan, Intellitech Corporation

IEEE 1149.1-2013 is not your father's JTAG. The new release in June of 2013 represents a major leap forward in standardizing how FPGAs, SoCs and 3D-SICs can be debugged and tested. The standard defines register level descriptions of on-chip IP with operational descriptions via the new 1149.1 Procedural Description Language.1, 2, 3 IEEE 1149.1-2013 adds support for TAP based access to on-chip IP, configuring I/O parameters such as differential voltage swing, crossing power domains and controlling on-chip power, segmented scan chains and interfacing into IEEE 1500 Wrapper Serial Ports and WIRs. The standard is architected to lower the cost of electronic products by enabling re-use of on-chip instruments through all phases of the IC life-cycle. The standard takes a 'divide and conquer' approach allowing IP (instrument) providers who have the most domain expertise of their IP to communicate the structure and operation of their IP in computer readable formats.

Dealing With UVM and OVM Sequences

by Hari Patel & Dhaval Prajapati, eInfochips

UVM/OVM methodologies are the first choice in the semiconductor industry today for creating verification environments. Because UVM/OVM are TLM-based (Transaction Level Modeling), sequence and sequence items play vital roles and must be created in the most efficient way possible in order to reduce rework and simulation time, and to make the verification environment user friendly. This article covers how to write generic and reusable sequences so that it's easy to add a new test case or sequence. We use SRIO (Serial Rapid IO) protocol as an example.

In UVM- and OVM-based environments, sequences are the basic building blocks directing the scenario generation process. Scenario generation consists of a sequence of transactions generated using UVM/OVM sequencers, so it's important to write sequences efficiently. Key to keep in mind is the fact that sequences are just not for the generating one random scenario for a specific test case. Sequences should be user- and protocol-friendly, utilizable at the test case level, and flexible enough to allow for maximum reuse in randomly generating scenarios.

Stories of an AMS Verification Dude: Putting Stuff Together

by Martin Vlach, Mentor Graphics

I don't know how this came about, but the other day I got hired to do something called AMS Verification. It seems that there is this chip design that combines digital and analog stuff, and I was asked to make sure that all of it works when it's put together and that it does what it was meant to do when they got going in the first place.

Not knowing any better, I guess I'll start by hoping that all of the pieces they handed to me were done just right as far as those designer dudes understood when they got handed their jobs. So here's what I'm thinking: The dudes may be real good in designing, but they are humans too and so they probably missed some points, and misunderstood some others, and when it's all put together, Murphy says that things will go wrong. Besides, those analog and digital dudes don't talk to each other anyway.

Portable VHDL Testbench Automation with Intelligent Testbench Automation

by Matthew Ballance, Mentor Graphics

We've come a long way since digital designs were sketched as schematics by hand on paper and tested in the lab by wiring together discrete integrated circuits, applying generated signals and checking for proper behavior. Design evolved to gate-level on a workstation and on to RTL, while verification evolved from simple directed tests to directed random, constrained-random, and systematic testing. At each step in this evolution, significant investment has been made in training, development of reusable infrastructure, and tools. This level of investment means that switching to a new verification environment, for example, has a cost and tends to be a carefully-planned migration rather than an abrupt switch. In any migration process, technologies that help to bring new advances into the existing environment while continuing to be valuable in the future are critical methodological "bridges".

Back to Top

← Back to Verification Horizons

Siemens Digital Industries Software

Siemens Digital Industries Software

#TodayMeetsTomorrow

Portfolio

  • Cloud
  • Mendix
  • Electronic Design Automation
  • MindSphere
  • Design, Manufacturing and PLM Software
  • View all Portfolio

Explore

  • Community
  • Blog
  • Online Store

Siemens

  • About Us
  • Careers
  • Events
  • News and Press
  • Customer Stories
  • Partners
  • Trust Center

Contact

  • VA - Contact Us
  • PLM - Contact Us
  • EDA - Contact Us
  • Worldwide Offices
  • Support Center
  • Give us Feedback
© Siemens 2023
Terms of Use Privacy Statement Cookie Statement DMCA