Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IQ
      • Verification IP
      • Static-Based Techniques
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Introduction to UVM
      • UVM Basics
      • Advanced UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Featured & On-Demand

      • Questa Verification IQ - April 11th
      • Continuous Integration
      • SystemVerilog Assertions
      • SoC Design & Functional Safety Flow
      • 2022 Functional Verification Study
      • Design Solutions as a Sleep Aid
      • CDC and RDC Assist
      • Formal and the Next Normal
      • Protocol and Memory Interface Verification
      • Webinar Calendar
    • On-Demand Library

      • Practical Flows for Continuous Integration
      • Lint vs Formal AutoCheck
      • The Three Pillars of Intent-Focused Insight
      • Formal Verification Made Easy
      • Fix FPGA Failures Faster
      • HPC Protocols & Memories
      • FPGA Design Challenges
      • High Defect Coverage
      • The Dog ate my RTL
      • Questa Lint & CDC
      • Complex Safety Architectures
      • Data Independence and Non-Determinism
      • Hierarchical CDC+RDC
      • All On-Demand Recordings
    • Recording Archive

      • Aerospace & Defense Tech Day
      • Exhaustive Scoreboarding
      • Improving Initial RTL Quality
      • CDC Philosophy
      • Hardware Emulation Productivity
      • Visualizer Debug Environment
      • Preparing for PCIe 6.0: Parts I & II
      • Automotive Functional Safety Forum
      • Siemens EDA Functional Verification
      • Improving Your SystemVerilog & UVM Skills
      • All Webinar Topics
    • Conferences & WRG

      • Industry Data & Surveys
      • DVCon 2023
      • DVCon 2022
      • DVCon 2021
      • Osmosis 2022
      • All Conferences
    • Siemens EDA Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • EDA Xcelerator Academy(Learning Services) Verification Training, Badging and Certification
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification IQ
      • Verification Horizons Blog
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - March 2023
      • Verification Horizons - December 2022
      • Verification Horizons - July 2022
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Academy News
      • Contact Us
    • Training

      • Learning @OneGlance (PDF)
      • SystemVerilog & UVM Classes
      • Siemens EDA Classes
  • Home
  • Verification Horizons
  • March 2015 | Volume 11, Issue 1

March 2015 | Volume 11, Issue 1

Verification Horizons - Tom Fitzpatrick, Editor

Verification Horizons Complete Issue:

  • Download - 5.7 MB

Verification Horizons Articles:

Welcome to the DVCon 2015 issue of Verification Horizons

by Tom Fitzpatrick, Editor and Verification Technologist, Mentor Graphics Corporation

As I write this note, it's February here in Massachusetts, which in 2015 means that there's about five feet of snow on the ground, with predictions of another foot of snow coming our way this weekend. And after that, the temperatures will drop to the single digits (°F), so even though my children will be on vacation from school next week, it's not really going to be an enjoyable week. Oh well, at least we got to enjoy the New England Patriots winning Super Bowl XLIX on a tremendous last-second interception.

The Patriots' Super Bowl win gave me an excellent opportunity to reflect on the passage of time. For those of you who don't follow (American) football, this was the Patriots' sixth Super Bowl appearance and fourth championship since 2002. Having become an avid fan since I moved to Massachusetts, this has been quite a run. I can remember each game, and my memories include watching my son grow up with each passing season. Watching him deal with the disappointment of heartbreaking losses and being able to celebrate so many exciting victories with him has truly been a blessing. And it doesn't hurt that he's now big enough to handle most of the snow shoveling, when we're not watching a game.

Does Design Size Influence First Silicon Success?

by Harry D. Foster, Mentor Graphics

In 2002 and 2004, Collett International Research, Inc. conducted its well-known ASIC/IC functional verification studies, which provided invaluable insight into the state of the electronic industry and its trends in design and verification at that point in time. However, after the 2004 study, no additional Collett studies were conducted, which left a void in identifying industry trends. To address this dearth of knowledge, over the years Mentor Graphics has commissioned multiple world-wide, double-blind, functional verification studies, covering all electronic industry market segments. In this article, we present a few highlights from our most recent study, and try to address the question: "Does design size influence the likelihood of achieving first silicon success?"

Successive Refinement: A Methodology for Incremental Specification of Power Intent

by Adnan Khan, John Biggs & Eamonn Quigley, ARM® Ltd., and Erich Marschner, Mentor Graphics

Managing power consumption is now one of the key drivers of design and implementation of Systems on Chip, whether it is for extending battery life in mobile devices or constraining power envelopes to manage thermal dissipation. As a result, many more IC design houses and IC IP suppliers are now starting to become much more serious about defining complex power control strategies for their products. This is resulting in widespread adoption of IEEE 1801 UPF as a means for describing both these strategies from high level power intent right down to details of how the power control strategies are implemented.

UPF was originally developed as an Accellera standard [1]. That version of UPF was then updated and was released as IEEE Std 1801TM-2009 UPF [2] and has continued to evolve further as an IEEE standard [3,4]. The initial version of the UPF standard focused more on implementation detail, but IEEE 1801 UPF and its more recent updates have widened the focus to cover more strategic or abstract aspects of power control strategies.

PowerAware RTL Verification of USB 3.0 IPs

by Gayathri SN and Badrinath Ramachandra, L&T Technology Services Limited

Power management is a major concern throughout the chip design flow from architectural design to RTL implementation and physical design. Multi-power domain SoCs are complex and present new integration and verification challenges because many blocks have different operating modes at different voltages, different clock period and duty cycles of each block being awake, asleep or in shutdown mode.

Mobile Devices which use standards like USB3 have raised the need for higher battery life. This means that USB3 designs need to be implemented with PowerAware architecture using low power techniques.

PowerAware verification for USB3 is a challenging task as there are numerous rules and conditions defined in the USB 3.0 Specification for lower, active and idle power management to ensure that USB3.0 designs are power efficient. Also it must ensure that the design specific power management circuitry functions as expected, and also that the overall chip functionality is not corrupted by the power intent described in the UPF descriptions.

Hardware Emulation: Three Decades of Evolution

by Dr. Lauro Rizzatti, Rizzatti LLC

About 30 years ago, when computers revolutionized the semiconductor design process, a new verification technology appeared on the horizon under the name of hardware emulation. It was implemented in a big-box and billed as being able to verify and debug chip designs.

Truth be told, there were precursors to this design verification approach. IBM for one already had experimented with hardware to accelerate design verification in the Yorktown Simulation Engine (YSE) and in the Engineering Verification Engine (EVE). In the early/mid 80s, Daisy Systems, Valid Logic, Teradyne and others also introduced hardware-based verification engines. The fact is all of these were simulation accelerators. That is, special purpose computers, some implemented in custom ASICs, others with commercial parts, that verified designs described via software languages. They ran faster than simulators but not fast enough to apply real-life stimulus to the design-under-test (DUT).

Evolving the Use of Formal Model Checking in SoC Design Verification

by Ram Narayan, Oracle

Project RAPID is a hardware-software co-design initiative in Oracle Labs that uses a heterogeneous hardware architecture combined with architecture-conscious software to improve the energy efficiency of database-processing systems. This article, adapted from a paper we presented at DVCon 2014, describes how formal methods went from being used opportunistically to a central place in the verification methodology of the RAPID SoC. Though not without a learning curve, formal did help the Oracle team achieve its verification goals of finishing on schedule and achieving first pass silicon success.

The initial RAPID verification plan largely relied on a constrained-random simulation environment developed using UVM. Most newly designed units had their own verification environment to thoroughly verify the unit prior to integration into the RAPID SoC. The SoC verification was largely used to verify the interaction between the different units under various operating modes.

Small, Maintainable Tests

by Ashley Winn, Sondrel IC Design Services

In any verification environment it takes a significant amount of work to keep all the tests running and to ensure that each test continues to be effective. To make this job easier, tests need to be kept as short as possible and should be written at the highest level of abstraction possible for the feature being tested. In UVM, sequences provide an ideal structure for creating test procedures at the right layer of abstraction for a particular feature. I'd like to recommend a strategy that uses default virtual sequences running on an environmentlevel virtual sequencer. This set up makes it easy to define and start sequences within a test, simplifies the end-of-test logic, and it allows you to move reused test procedures into a sequence library. It also helps keep your test files manageably small.

Functional Coverage Development Tips: Do's and Don'ts

by Samrat Patel & Vipul Patel, eInfochips

The fundamental goal of a verification engineer is to ensure that the Device Under Test (DUT) behaves correctly in its verification environment. As chip designs grow larger and more complex with thousands of possible states and transitions, a comprehensive verification environment must be created that minimizes development effort. To minimize effort, functional coverage is used as a guide for directing verification resources by identifying tested and untested portions of the design. The approach should give any verification engineer confidence in DUT functionality.

Functional coverage is a user-defined coverage which maps each functionality defined in the test plan to be tested to a cover point. Whenever the functionality to be tested is hit in the simulation, the functional coverage point is automatically updated. A functional coverage report can be generated which summarizes how many coverage points were hit. Functional coverage metrics can be used to measure the progress of a verification effort.

← Back to Verification Horizons

Siemens Digital Industries Software

Siemens Digital Industries Software

#TodayMeetsTomorrow

Portfolio

  • Cloud
  • Mendix
  • Electronic Design Automation
  • MindSphere
  • Design, Manufacturing and PLM Software
  • View all Portfolio

Explore

  • Community
  • Blog
  • Online Store

Siemens

  • About Us
  • Careers
  • Events
  • News and Press
  • Customer Stories
  • Partners
  • Trust Center

Contact

  • VA - Contact Us
  • PLM - Contact Us
  • EDA - Contact Us
  • Worldwide Offices
  • Support Center
  • Give us Feedback
© Siemens 2023
Terms of Use Privacy Statement Cookie Statement DMCA