Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IQ
      • Verification IP
      • Static-Based Techniques
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Introduction to UVM
      • UVM Basics
      • Advanced UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Featured & On-Demand

      • Questa Verification IQ - April 11th
      • Continuous Integration
      • SystemVerilog Assertions
      • SoC Design & Functional Safety Flow
      • 2022 Functional Verification Study
      • Design Solutions as a Sleep Aid
      • CDC and RDC Assist
      • Formal and the Next Normal
      • Protocol and Memory Interface Verification
      • Webinar Calendar
    • On-Demand Library

      • Practical Flows for Continuous Integration
      • Lint vs Formal AutoCheck
      • The Three Pillars of Intent-Focused Insight
      • Formal Verification Made Easy
      • Fix FPGA Failures Faster
      • HPC Protocols & Memories
      • FPGA Design Challenges
      • High Defect Coverage
      • The Dog ate my RTL
      • Questa Lint & CDC
      • Complex Safety Architectures
      • Data Independence and Non-Determinism
      • Hierarchical CDC+RDC
      • All On-Demand Recordings
    • Recording Archive

      • Aerospace & Defense Tech Day
      • Exhaustive Scoreboarding
      • Improving Initial RTL Quality
      • CDC Philosophy
      • Hardware Emulation Productivity
      • Visualizer Debug Environment
      • Preparing for PCIe 6.0: Parts I & II
      • Automotive Functional Safety Forum
      • Siemens EDA Functional Verification
      • Improving Your SystemVerilog & UVM Skills
      • All Webinar Topics
    • Conferences & WRG

      • Industry Data & Surveys
      • DVCon 2023
      • DVCon 2022
      • DVCon 2021
      • Osmosis 2022
      • All Conferences
    • Siemens EDA Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • EDA Xcelerator Academy(Learning Services) Verification Training, Badging and Certification
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification IQ
      • Verification Horizons Blog
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - March 2023
      • Verification Horizons - December 2022
      • Verification Horizons - July 2022
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Academy News
      • Contact Us
    • Training

      • Learning @OneGlance (PDF)
      • SystemVerilog & UVM Classes
      • Siemens EDA Classes
  • Home
  • Verification Horizons
  • February 2013 | Volume 9, Issue 1

February 2013 | Volume 9, Issue 1

Verification Horizons - Tom Fitzpatrick, Editor

Verification Horizons Complete Issue:

  • Download  Verification Horizons - February 2013 | Volume 9, Issue 1 - Hi-Resolution Download - 10.4 MB

Verification Horizons Articles:

What Do Meteorologists and Verification Technologists Have in Common?

by Tom Fitzpatrick, Editor and Verification Technologist, Mentor Graphics Corporation

As verification engineers, we have to be able to forecast the accurate completion of our projects and also be able to cope with problems that may occur. Unfortunately, there are severe consequences when we get it wrong. And the stakes keep getting higher. We've spoken for years about designs getting more complex, but it's not just the number of gates anymore. The last few years have shown a continuous trend towards more embedded processors in designs, which brings software increasingly into the verification process. These systems-on-chip (SoCs) also tend to have large numbers of clock domains, which require additional verification. On top of this, we add multiple power domains and we need not only to verify the basic functionality of an SoC, but also to verify that the functionality is still correct when the power circuitry and control logic (much of which is software, by the way) is layered on top of the problem.

Using Formal Analysis to "Block and Tackle"

by Paul B. Egan, Rockwell Automation

Traditionally, connectivity verification at the block level has been completed using dynamic simulation, and typically involves writing directed tests to toggle the top level signals, then debugging why signal values did not transition as expected. For modules with a high number of wires and many modes of operation, the number of required tests quickly becomes unmanageable. We were searching for a better approach. This article will explain how we applied formal analysis at the block level, extended this to full chip and describe how we significantly reduced verification time at both the block and chip level. Just like a block and tackle provides a mechanical advantage, the formal connectivity flow provides a verification advantage.

Bringing Verification and Validation under One Umbrella

by Hemant Sharma and Hans van der Schoot; Mentor Graphics

The standard practice of developing RTL verification and validation platforms as separate flows, forgoes large opportunities to improve productivity and quality that could be gained through the sharing of modules and methods between the two. Bringing these two flows together would save an immense amount of duplicate effort and time while reducing the introduction of errors, because less code needs to be developed and maintained.

A unified flow for RTL verification and pre-silicon validation of hardware/software integration is accomplished by combining a mainstream, transaction-level verification methodology – the Universal Verification Methodology (UVM) – with a hardware-assisted simulation acceleration platform (also known as co-emulation). Necessary testbench modifications to enable this combination are generally nonintrusive and require no third-party class libraries; thus, verification components from customer environments are readily reusable for pure simulation environments, different designs using the same block, and different verification groups.

System Level Code Coverage using Vista Architect and SystemC?

by Ken P. McCarty, Mentor Graphics

System Level Code Coverage gives the architects and designers the opportunity to validate that their verification strategy is comprehensive and the design is optimal. It is important to understand that the System Level Code Coverage is a forward looking strategy, from an architectural perspective. It is preformed even before the first line of the RTL is ever written.

The Evolution of UPF: What's Next?

by Erich Marschner, Product Manager, Questa Power Aware Simulation, Mentor Graphics

Usage of the Unified Power Format (UPF) is growing rapidly as low power design and verification becomes increasingly necessary. In parallel, the UPF standard has continued to evolve. A previous article1 described and compared the initial UPF standard, defined by Accellera, and the more recent IEEE 1801-2009 UPF standard, also known as UPF 2.0. The IEEE definition of UPF is the current version of the standard, at least for now, but that is about to change. The next version, UPF 2.1, is scheduled for review by the IEEE Standards Review Committee in early March. When it is approved, UPF 2.1 will become the current version of the UPF standard.

UPF 2.1 is an incremental update of UPF 2.0, not a major revision. That said, UPF 2.1 contains a large number of small changes, ranging from subtle refinements of existing commands to improve usability, to new concepts that help ensure accurate modeling of power management effects. This article describes some of the more interesting enhancements and refinements coming soon in UPF 2.1.

Top Five Reasons Why Every DV Engineer Will Love the Latest SystemVerilog 2012 Features

by Ajeetha Kumari, Srinivasan Venkataramanan, CVC Pvt. Ltd.

Power management is a critical aspect of chip design today. This is especially true for chips designed for portable consumer electronics applications such as cell phones and laptop computers, but even non-portable systems are increasingly optimizing power usage to minimize operation costs and infrastructure requirements. Power management requirements must be considered right from the beginning, and the design and implementation of power management must occur throughout the flow, from early RTL design on through physical implementation. Verification of the power management logic is also essential, to ensure that a device operates correctly even when the power to various subsystems or components is turned off or varied to optimally meet operating requirements.

SVA in a UVM Class-based Environment

by Ben Cohen, author, consultant, and trainer.

Verification can be defined as the check that the design meets the requirements. How can this be achieved? Many verification approaches have been used over the years, and those are not necessarily independent, but often complementary. For example, simulation may be performed on some partitions while emulation in other partitions. The verification process in simulation evolved throughout history from simple visual (and very painful) examination of waveforms with the DUT driven by a driver using directed tests, to transaction-based pseudo-random tests and checker modules. This has led to the development of class-based frameworks (e.g., e, VMM, OVM, UVM) that separate the tests from the environment, are capable of generating various concurrent scenarios with randomness and constraints, and are capable of easily transferring data to class-based subscribers for analysis and verification. In parallel, designers and verification engineers have improved the detection and localization of bugs in their design code using assertion-based languages (e.g., PSL, SVA).

The Formal Verification of Design Constraints

by Ajay Daga, CEO, FishTail Design Automation Inc.

There are two approaches to the verification of design constraints: formal verification and structural analysis. Structural analysis refers to the type of analysis performed by a static timing tool where timing paths either exist or not based on constant settings and constant propagation. Formal verification, on the other hand, establishes the condition under which a timing path exists based on the propagation requirements for the path. These path propagation requirements are then used to prove or disprove constraint properties based on a formal analysis of the design. Structural analysis is fast because it is simple. Formal verification, however, is more complete and less noisy. Formal verification allows engineers to guarantee that their design is safe from silicon issues that result from an incorrect constraint specification. Structural analysis cannot make this claim because it cannot independently establish the correctness of a variety of design constraints.

OVM to UVM Migration, or "There and Back Again: A Consultant's Tale"

by Mark Litterick, Verification Consultant, Verilab GmbH

While it is generally accepted that the Universal Verification Methodology (UVM) is the way forward for modern SystemVerilog based verification environments, many companies have an extensive legacy of verification components and environments based on the predecessor, the Open Verification Methodology (OVM). Furthermore single push migration of all block-level and top-level environments between the two methodologies may be considered too disruptive for most companies taking into account families of complex derivative under development and scheduled for the near future. Several of our major clients are in the transition phase of initiating new product developments in UVM while having to maintain ongoing development in OVM. Furthermore it is imperative for the new development that we migrate the vast majority of existing verification components from OVM to UVM even though the projects providing the VIP remain with OVM for the time being.

← Back to Verification Horizons

Siemens Digital Industries Software

Siemens Digital Industries Software

#TodayMeetsTomorrow

Portfolio

  • Cloud
  • Mendix
  • Electronic Design Automation
  • MindSphere
  • Design, Manufacturing and PLM Software
  • View all Portfolio

Explore

  • Community
  • Blog
  • Online Store

Siemens

  • About Us
  • Careers
  • Events
  • News and Press
  • Customer Stories
  • Partners
  • Trust Center

Contact

  • VA - Contact Us
  • PLM - Contact Us
  • EDA - Contact Us
  • Worldwide Offices
  • Support Center
  • Give us Feedback
© Siemens 2023
Terms of Use Privacy Statement Cookie Statement DMCA