Search Results

Filters
Reset All

Filters

Topic

Show More

Show Less

Content Type

Show More

Show Less

Audience

Resource Type

Show More

Show Less

Tags

Show More

Show Less

2079 Results

  • UVM - Universal Verification Methodology

    The Universal Verification Methodology (UVM) is a powerful framework for designing and verifying complex digital systems, offering significant benefits in terms of reusable and scalable testbenches. UVM promotes reusability by providing a standardized methodology for creating modular, configurable verification components. This modular approach allows engineers to develop testbenches using reusable building blocks, reducing redundancy and saving time. Furthermore, UVM enhances scalability, enabling easy adaptation to changing project requirements. As designs evolve, UVM's hierarchical and flexible architecture simplifies the addition or modification of testbench components, ensuring efficient and maintainable verification environments. Overall, UVM streamlines the verification process, promoting productivity and ensuring robust, adaptable testbenches.

  • Acceleration

    Verification is a critical phase in the design and development of digital systems, ensuring their correctness and functionality. Simulation has long been the primary technique used for verification, enabling engineers to model and test designs using software-based models. However, as designs have grown increasingly complex, traditional simulation methods have proven to be insufficient in meeting the demands of modern verification. Particularly with the emergence of hardware/software co-verification requirements. This has led to the emergence of emulation as a more efficient and effective approach that combines simulation with hardware acceleration techniques.

  • Planning, Measurement and Analysis

    Planning, measurement, and analysis are critical in digital design and verification as they provide a structured approach to ensure the reliability and functionality of complex electronic systems. Planning sets clear objectives and strategies for verification. Metrics offer quantifiable data to assess progress and completeness, helping to identify untested areas. Analysis enables the detection of design flaws and bugs. Together, they enhance efficiency, reduce risks, and accelerate time-to-market, ensuring the final product meets specifications. These processes are indispensable for achieving high-quality, reliable, and compliant digital designs in an increasingly competitive and fast-paced technology landscape.

  • Formal Verification

    Formal verification is a topic area that encompasses a wide array of formal-based technologies and methodologies, including formal property checking, automatic formal apps, and sequential and logic equivalence verification. By employing mathematical models and logical reasoning, formal solutions scrutinize and validate complex systems, such as hardware circuits with the goal of enhancing reliability and eliminating design flaws.