
A QUARTERLY PUBLICATION OF MENTOR GRAPHICS Q4 ‘05—VOL. 1, ISSUE 1

verifi cation

“Each issue will
include several
in-depth technical
articles about the
latest advances in
verification technology
and methodology, as
well as some timely
tips for making better
use of the tools you
may currently have.”
 —Tom Fitzpatrick

Hello and welcome to the Verifi cation Horizons

Newsletter!

We at Mentor are pleased to share some

exciting information on the frontiers of

functional verifi cation. We hope you will fi nd

this quarterly newsletter to be an important

source of information as we continue to explore

and present solutions in this area. Many of you

have heard about the release of our QuestaTMhave heard about the release of our QuestaTMhave heard about the release of our Questa

Verifi cation Platform back in May. Questa is an

evolutionary leap in the life of our successful

ModelSim HDL simulator. In keeping with

Questa’s broader, more ambitious capabilities,

we’ve created this new newsletter to provide

concepts, values, methodologies and examples

to assist with the understanding of what these

advanced functional verifi cation technologies

can do and how to apply them most effectively.

We have big plans for this newsletter. Each

issue will include several in-depth technical

articles about the latest advances in verifi cation

technology and methodology, as well as some

timely tips for making better use of the tools you

may currently have.

In this fi rst issue, the feature article presents

a hands-on view of how to build a reusable

SystemVerilog testbench. There has been

much “buzz” recently about the need to apply

 cont. page 2

Hello and Welcome to the
Verifi cation Horizons Newsletter!
By Tom Fitzpatrick, Editor
and Verifi cation Technologist

Featuring:

A Reusable
SystemVerilog
Testbench...

in Only 300
Lines of Code!

...see page 5

Improving the Efficiency of
Your ABV Methodology...page 12
This article introduces the benefits of ABV, as

well as how to achieve a highly efficient ABV

methodology while understanding avoidable

pitfalls. Read more

Constrained-Random Verification
with SystemVerilog...page 18
SystemVerilog has been designed specifically to

support this methodology. This article will provide

some of the basics for users to start coding

efficiently with SystemVerilog. Read more

Adopting Assertion-Based
Verification with Accellera Standard
Open Verification Library...page 30
This article will explain OVL, and its use, through

an explanation of the various control parameters.

Read more

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com2

“Welcome”, continued from Page 1

assertions, constrained randomization and

functional coverage to the functional verifi cation

problem, a need which Questa fi lls nicely from

the tool perspective. In this article, we introduce

some techniques for architecting your testbench

and show how to apply these capabilities

from a language and coding perspective, by

focusing on modularity and transaction-level

communication interfaces between verifi cation

components.

The next article, “Improving the Effi ciency

of Your ABV Methodology,” discusses how to

achieve an effi cient ABV methodology through

assertion automation and the targeted use of

assertions. It also describes how CheckerWare

assertion macros support automation,

maintenance, optimization, and suffi cient

functional coverage.

The following article provides an overview

of constrained random stimulus generation

in Questa using SystemVerilog. It covers the

topics of random stability for repeatability of

results — an important factor in being able to

debug designs — and discusses the Questa

constraint solver in some detail. It provides a

basic understanding of the functionality and

operation of the solver and shows how to write

constraints that can be solved effi ciently by the

solver.

In our Standards & Partners section, we will

include a discussion of the new SystemVerilog-

based Open Verifi cation Library, which

Mentor donated to Accellera. In addition to

the standardization discussion, we will also

show how to use the OVL to get started with

Assertion-Based Verifi cation.

In our fi nal article, “Bridging an Untimed High-

Level Verifi cation Language with Timed HDL

Modeling Environments — The Advantages of

Transaction-Based Verifi cation,” we expand on

the theme of transaction-level communication

in the testbench. This article shows how

architecting your testbench to use transaction-

level communication provides the fl exibility to

connect components of different abstraction

levels, including a transaction-level testbench

to an RTL design. We discuss the use of the

SystemVerilog Direct Programming Interface

(DPI) as a useful inter-language communication

mechanism. For example, the SystemVerilog

DPI allows a testbench to be written in SystemC

and effi ciently coupled to a design in HDL,

whether the design is executed in a simulator or

an emulation session.

We hope you enjoy this newsletter, both in its

inaugural and future issues. We will endeavor to

use this forum to keep you up to date with all the

latest additions to the Questa product family,

as well as other verifi cation products across

Mentor. Of course, tools by themselves are not

enough. Because at Mentor we will continue

to focus on supporting standards in all our

verifi cation tools, it will always be incumbent on

us to provide value to you, our customers, above

and beyond the tools themselves. Rather than

locking you into a proprietary solution, we will

strive to provide this additional value in terms of

training, consulting, documentation, and other

means. The Verifi cation Horizons Newsletter

will be one signifi cant part of this overall effort.

Respectfully submitted,

Tom Fitzpatrick

Verifi cation Technologist

Design Verifi cation and Test

www.mentor.com 3

Page 5

A Reusable SystemVerilog Testbench
in Only 300 Lines of Code
BY DAVID JONES, XTREME EDA

Page 12

Improving the Efficiency of Your ABV Methodology
BY NEIL HAND, MENTOR GRAPHICS DESIGN VERIFICATION AND TEST DIVISION

Page 18

Constrained Random Stimulus Generation
in Questa Using SystemVerilog
BY RAGHU ARDEISHAR,
MENTOR GRAPHICS DESIGN VERIFICATION AND TEST DIVISION

Page 25

Bridging an Untimed High-Level Verification
Language with Timed HDL Modeling Environments—
The Advantages of Transaction-Based Verification
BY JOHN STICKLEY, MENTOR EMULATION DIVISION

Page 30

Adopting Assertion-Based Verification with
Accellera Standard Open Verification Library
BY KENNETH LARSEN, MENTOR GRAPHICS DESIGN VERIFICATION
AND TEST DIVISION & DENNIS BROPHY, MENTOR GRAPHICS

Table of Contents

Verifi cation Horizons is a publication

of Mentor Graphics Corporation,

all rights reserved.

Editor: Tom Fitzpatrick

Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters

8005 SW Boeckman Rd.

Wilsonville, OR 97070-7777

Phone: 503-685-7000

To subscribe visit:

http://www.mentor.com/products/fv/

verifi cation_news.cfm

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com4

 “...it will always
be incumbent on us
to provide value to
you, our customers,
above and beyond the
tools themselves.”

Tom Fitzpatrick

Verifi cation Technologist

Design Verifi cation and Test

and Verifi cation Horizons Editorand Verifi cation Horizons Editorand Verifi cation Horizons Ed

www.mentor.com 5

INTRODUCTION

SystemVerilog offers an exciting new

environment in which to construct testbenches.

Language features support constrained random

generation, object-oriented programming,

assertions, coverage, and more. Verifi cation

engineers new to this environment may not

know where to start or how to use these features.

This paper presents a complete testbench for

verifying a rock, scissors, paper arbitration

module, based on a methodology developed

at Mentor Graphics and XtremeEDA, aimed at

building effective verifi cation environments

with minimal complexity. Due to the simplicity

of the device under test (DUT) we can present

the complete testbench here, as it totals fewer

than 300 lines of code.

The fi rst section of this paper briefl y describes

the motivations behind the major verifi cation

features of SystemVerilog. The paper then

proceeds to present a high-level verifi cation

environment and describe the components that

comprise it.

MODERN VERIFICATION:
CONSTRAINED RANDOM
COVERAGE-DRIVEN
VERIFICATION

A typical test environment developed in

Verilog enables directed test cases: each test

case sets up a scenario in the DUT, runs a

(hopefully) problematic input and verifi es that

the DUT responds correctly. Directed test

cases are good at fi nding expected bugs, but

will not fi nd more complex bugs resulting from

the interaction of different features. As devices

get more complex, fi nding these bugs becomes

critical to success. SystemVerilog has four

main verifi cation features to support advanced

randomized testbenches:

• Object-oriented programming features

allow the user to represent complex data

types and to abstract away low level

operations on these types. Typically,

SystemVerilog verifi cation proceeds at the

transaction level, where the fundamental

objects are entire transactions (bus cycles,

packets, etc.) rather than signal transitions.

• Constrained randomization selects

random values for data transactions.

Constraints are used to ensure that the

selection of values is both relevant (e.g.

Ethernet payload size between 46 and 1500

bytes) and useful.

• Functional coverage tabulates events

occurring within the DUT and testbench to

allow the verifi cation engineer to determine

if important functions inside the DUT have

been exercised under all relevant scenarios.

For example, a scheduler block may take

an exceptional action if all output FIFOs are

full. Functional coverage can be used to

verify that all output FIFOs are indeed full at

some point in the simulation, preparatory

to verifying that the scheduler performs

correctly in this case.

• Temporal assertions verify low-level

aspects of communication protocols.

Communication between functional blocks

in a design typically must follow a well-

defi ned protocol over time. Such protocols

include not only standards such as PCI and

Ethernet, but also the timing details of any

proprietary internal interfaces.

TYPES OF REUSE

Before examining a methodology for creating

reusable testbenches, we should first look at

what we are trying to achieve with “reuse”. We

can identify at least three types of reuse: reuse

of verification components, reuse of test cases,

and reuse of testbenches. Each type of reuse

places conditions on the resulting code.

When one thinks of a reusable testbench,

the first thing that comes to mind is reusable

verification components, typically associated

with a signaling protocol such as PCI or SPI4φ2.

Indeed, reusable verification components

have spawned a whole industry of verification

intellectual property (VIP). Verification

component reuse requires that the domain of

possible transactions (read, write, etc.) is well

defined.

In addition to verifi cation components,

individual test cases can be reused. For example,

a PCI core is verifi ed using an environment

consisting of PCI drivers and monitors, as

well as a suite of test cases. Although it is

common to package the drivers and monitors

for reuse, one can also package the test cases

to create a complete test suite. Doing this

effectively requires that the PCI test engineer

defi ne and abstract the protocol operations on

the application side of the PCI bus (e.g. a PCI-

to-Wishbone bridge would refl ect transactions

on a Wishbone bus). To use the test suite,

customers must implement the application-side

protocol in a manner specifi c to their designs.

Finally, proper architecture of testbenches

can enhance reuse possibilities, either related to

a single design, or across multiple designs. For

a single design, proper architecture at the block

level allows the testbench to be used as-is to

cover the block within the full-chip testbench.

Across multiple designs, proper architecture

minimizes re-work to test successive devices.

 continued next page

A Reusable SystemVerilog Testbench in Only 300 Lines of Code by David Jones, Xtreme EDA

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com6

EXAMPLE DUT

This paper will provide the complete

testbench for a rock-paper-scissors (RPS)

arbiter. The rules for RPS itself are described

at http://www.worldrps.com. The example DUT

referees a version between two digital logic

players. The pin interface for each player is

shown below.

interface player_if(input clk);
reg r, s, p; // Inputs
reg go;
reg [4:0] score; // Range 0-10

 modport player(
 output r, s, p,
 input go, score, clk
);
 modport arbiter(
 input r, s, p,
 output go, score,
 input clk
);
 modport monitor(
 input r, s, p,
 input go, score,
 input clk
);

endinterface

There are three inputs that normally must

be low. Upon receipt of the go signal (active

high for one clock), the player must assert

one of the three lines for one clock. The DUT

will then determine which wins, and increment

the appropriate score. Play proceeds until one

score meets a limit, which is confi gured through

a confi guration interface:

interface limit_if(input clk);
reg load;
reg [4:0] limit;

 modport confi gure(
 input clk,
 output load, limit
);
 modport dut(
 input clk, load, limit
);
endinterface

The timing of the protocol between a player and

an arbiter is shown in Figure 1.

ELEMENTS OF A REUSABLE
TEST ENVIRONMENT

The elements of a typical reusable test

environment are shown in Figure 2. Drivers,

monitors, test cases and scoreboards will

be familiar to seasoned Verilog testbench

designers. SystemVerilog allows the verifi cation

engineer to better model transactions and

defi ne the lines of communication between

the components. To this end, the elements

of a reusable SystemVerilog testbench also

include the dynamic data objects, as well as

standardized communication channels.

DYNAMIC DATA MODEL

Modern verifi cation is done as much as

possible at the transaction level. A transaction

is a logical unit of work, such as a burst cycle

on a bus, or a packet sent over an interface.

Transaction-level modeling concentrates

on the interactions of transactions upon the

DUT without worrying about the pin-level

representation of the transactions. Verilog

testbenches cannot model data transactions

very well as Verilog’s only real data type is

the vector of bits. In contrast, SystemVerilog

classes can represent complex transactions

in an organized manner. Transaction objects

are passed among testbench components by

reference, improving performance.

Transactions are best modeled using

SystemVerilog classes. A transaction object

must contain all information required: operation

type, address, data, etc. Depending on the

transaction it may also include the time at

which the transaction was issued.

In addition to defi ning the data,

SystemVerilog’s object-oriented features allow

the designer to defi ne a functional interface to

the objects through a set of public methods

(tasks and functions). Manipulation of class

instances through the methods is preferred over

direct access to the data items. The methods

allow decoupling of the data representation

www.mentor.com 7

and the behavior of the object, so that new

fi elds can be added, or the implementation of

certain behaviors modifi ed without impacting

the verifi cation components that work with

the objects. The following operations are

representative of what can be done with

methods:

• Make a copy of an object.

• Compare an object with another.

• Create a string representation of the

object for use in a text messaging system.

• Pack or unpack the fi elds of an object

into a stream of bytes.

Finally, class defi nitions allow the specifi cation

of random fi elds and randomization constraints.

Constraints permit automatic generation of legal

transactions where the specifi c components of

the transaction are randomly generated. Care

must be taken when applying constraints.

Although some constraints (such as Ethernet

frame size) are desired to conform to a protocol

specifi cation, it is useful to disable these

constraints to test the DUT behavior outside of

the specifi cation. Besides constraints applied

for correctness, one may also apply constraints

to bias stimulus generation towards interesting

cases, e.g. generating high-speed streams

of small packets to stress a DUT having a

minimum per-packet overhead. Often these

constraints confl ict with one another. To deal

with this, either group the constraints into

separate constraint blocks and use constraint_

mode() to selectively disable them, or create

subclasses of a base class for each desired

group of constraints. Both approaches are

useful in practice.

As an example, here is the defi nition of

the transactions for our RPS example. The

defi nitions are placed in a package (rps_pkg)

so that they may be used anywhere in the

testbench.

package rps_pkg;
 typedef enum { ROCK, SCISSORS, PAPER } rps_t;

 class rps_c;
 rand rps_t rps;
 function string toString();
 return rps.name;
 endfunction
 endclass

 class rps_mon_c;
 rps_t rps;
 bit ok;
 int score;

 function string toString();
 reg [63:0] work;
 string result;

 $sformat(work, «%0d», score);
 if (ok)
 result = rps.name;
 else
 result = «Invalid»;
 return {«score=»,work,» play=»,result};
 endfunction
 endclass

endpackage

Class rps_c models a single move by one

player. Its only component is the choice of play

(rock, paper or scissors) which we represent by

an enumerated type. The rps fi eld is random,

enabling generation of random plays.

Class rps_mon_c models a transaction

recovered by a monitor. In addition to the play,

it conveys an “ok” status (a player may decline

to make a move when required) as well as the

score.

Both of these classes have a toString()

method that returns a string representation of

the data values.

STANDARDIZED INTERCONNECTS

Before discussing the static elements of the

testbench, it is useful to discuss the techniques

used to connect them together. Our methodology

uses SystemVerilog interfaces for both pin-level

and transaction-level interconnect.

SystemVerilog interfaces encapsulate both

signal defi nitions and task/function defi nitions

inside a construct that can be instantiated

much like a module. We use modports to

document the various functional aspects inside

an interface. Pin-level (physical) interfaces are

defi ned through the signals contained within

interfaces, and transaction-level interfaces are

defi ned using tasks and functions. The pin-

level interfaces to our DUT have already been

described.

For a verifi cation component to be reusable,

the functional interfaces through which it

generates or accepts transactions must be well

defi ned and standardized. Mentor Graphics

has developed SystemVerilog standardized

interconnects based on the OSCI SystemC TLM

standard transports. Each transport is type-

parameterized for the transaction type and

optionally the response type.

• The TLM FIFO interface supports

unidirectional blocking and non-blocking

data transfers. This transport is used where

the source does not care about completions

(e.g. transmitting ATM cells).

• The TLM request/response channel

supports two independent FIFO interfaces,

one for requests, and one for responses.

This transport is used where a response

is required to a request, and requests

and responses may overlap in time (e.g.

PCI Express.) Each FIFO may block

independently.

• The TLM transport channel supports

a serialized request-response mechanism.

A semaphore is used to ensure that only

one request may be outstanding in the

channel at any given time. The transmitting

component blocks until a response is

received.

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com8

In addition to the above channels inspired by

SystemC, we have developed an analysis port

interface. An analysis port is a non-blocking

communication channel that can be connected

to more than one sink. Each sink component

is presented with a transaction using a non-

blocking void function call. In contrast to the

other transports, the analysis port functions

correctly with zero, one, or more than one sink

connected.

The above interconnect schemes handle

transactional communication. Since

transactions can be common to multiple devices

or environments, they are good candidates

for reuse. However, testbench-specifi c

communication (e.g. between a scoreboard

and a test controller) is often necessary. Ad-

hoc methods, such as signals (good for boolean

indications), events and hierarchical task calls

can be used where required.

STATIC COMPONENTS

Referring back to Figure 2, a test environment

will have the following types of devices.

Stimulus Generator

A stimulus generator creates the transactions

that are sent into the DUT. A directed stimulus

generator uses imperative code to create

individual transactions. A better approach is

to use a random stimulus generator, which

randomizes the data properties of a class

instance. The stimulus generator usually

connects to a blocking transport, such as a

TLM FIFO.

Here is the stimulus generator for our RPS

example:

interface gen(interface.put_if sink);
import rps_pkg::*;

rps_c item;

 always begin
 item = new;
 assert(item.randomize()) else
 $error(“Can’t randomize item.”);
 sink.put(item);
 end

endinterface

The code above creates a new rps_c

transaction object, randomizes it, and sends

it to the transport, in this case a TLM FIFO.

The FIFO must have a fi nite size such that this

generator will eventually block. A more complex

generator may support being started/stopped

from the test case.

Drivers

Drivers convert transactions into lower-layer

transactions or pin activity. The typical driver

accepts transactions from a blocking transport

such as a FIFO and either creates transactions

for a lower-level protocol and passes them

on to another transport, or implements the

transaction as pin-level activity. Some drivers,

such as bus drivers, may also need to obtain

a response. These drivers will connect to the

request/response or transport channels. Pin-

level drivers for synchronous protocols should

use non-blocking assignments to avoid race

conditions.

Here is the example driver:

interface driver(interface.get_if source,
 interface.player pins);
import rps_pkg::*;
rps_s xact;

 always @(posedge pins.clk) begin
 if (pins.go && source.try_get(xact)) begin
 pins.r <= (xact.rps == ROCK);
 pins.s <= (xact.rps == SCISSORS);
 pins.p <= (xact.rps == PAPER);
 end else begin
 pins.r <= 0;
 pins.s <= 0;
 pins.p <= 0;
 end
 end
endinterface

The driver must conform to the device

protocol. It cannot set any of the rock/paper/

scissors bits until the arbiter gives us the go

signal. At that point, the pins are driven based

on the transaction. At all other times the player’s

pins must be low.

This driver uses try_get() so that it won’t

block. It is effectively a synchronous circuit in

itself. Non-blocking assignments are used to

avoid race conditions with the DUT.

Monitors

Monitors convert pin-level activity or lower-

layer transactions into higher-layer transactions.

In our methodology, monitors connect to

analysis ports, which guarantees that the act of

issuing a transaction is non-blocking, thereby

avoiding the monitor missing subsequent

pin-level activity. Pin-level monitors also

incorporate assertions to verify the temporal

properties of the protocols they are monitoring.

Typically, the assertions check that the signals

are well-defi ned (not Z or X), and that each

transaction conforms to some legal cycle and

follows all of the conditions imposed upon it.

Basically, the assertions verify all properties of

the protocol independent of the data. Monitors

are located on the output path from the DUT

www.mentor.com 9

as expected, but they are also useful on the

input path, to verify that the drivers are working

correctly, to provide proper transactions for the

scoreboard, and to collect coverage.

Our example monitor code for one player

follows:

interface play_mon(interface.monitor pins, input rst);
import rps_pkg::*;
rps_mon_c item = new
rps_mon_c item_c;
reg last_go, last2_go;

 // Recover plays one clock after go
 always @(posedge pins.clk) begin
 last_go <= pins.go;
 last2_go <= last_go;
 end

 always @(posedge pins.clk) begin
 item.ok = 1’b1;

 if (last_go) begin
 case ({pins.r,pins.p,pins.s})
 3’b001: item.rps = SCISSORS;
 3’b010: item.rps = PAPER;
 3’b100: item.rps = ROCK;
 default: item.ok = 1’b0;
 endcase
 end

 if (last2_go) begin
 item.score = pins.score;
 item_c = new(item);
 $display(“%m: %s”, item_c.toString());
 ap.write(item_c);
 end
 end

 analysis_port #(rps_mon_s) ap();

 // Asertions
 property no_meta;
 @(posedge pins.clk) disable iff (rst)
 $isunknown({pins.go,pins.r,pins.p,pins.s,pins.score})==0;
 endproperty
 assert_no_meta: assert property (no_meta);

 property valid_play;
 @(posedge pins.clk) disable iff (rst)
 pins.go |=> $countones({pins.r,pins.p,pins.s})==1;
 endproperty

 assert_valid_play: assert property (valid_play);

 property in_turn;
 @(posedge pins.clk) disable iff (rst)
 !pins.go |=> {pins.r,pins.p,pins.s}==0;
 endproperty
 assert_in_turn: assert property (in_turn);

endinterface

The fi rst part of the monitor recovers

transactions from the pin-level activity. We

need to sample the player inputs one clock after

“go” is sampled high, and we need to sample

the updated scores one clock after that.

On the fi rst clock, we decode the pin activity

into one of ROCK/PAPER/SCISSORS. Only legal

bit patterns are accepted; all others will result in

an illegal transaction. On the second clock we

sample the score and send the transaction to

the analysis port.

The other important part of a monitor is

the protocol assertions. We use assertions to

verify that:

• There are no Z/X meta-values in the

plays or score.

• That exactly one player input is high

one clock after "go".

• That no player input is high at any

other time.

Scoreboards

A scoreboard is a component that performs

complex data checks. A typical scoreboard

may include the following components:

• A database of transactions received to

date. The format of this database depends

on the requirements. For example, a router

scoreboard may require that each port

maintain an ordered queue of expected

packets.

• A behavioral model of the DUT. This

model must implement any required data

manipulation functions of the DUT. This

model is usually simpler than the DUT since it

operates at the transactional level rather than

the pin level, and need not be synthesizable.

• A collection of data checks. Each

data check runs when the database has

received suffi cient data to do so. Where

possible, the data checks should be written

to verify the behavior of the DUT without

using a behavioral model, as it is likely that

a behavioral model will contain the same

conceptual errors (although not necessarily

implementation errors) as the DUT. For

example, a Reed-Solomon encoder should

be verifi ed by attempting to decode with a

behavioral decoder. If the input has not been

corrupted by error injection, then the decoder

should be able to confi rm zero errors.

However, use of checks alone is not always

possible; for example, an image processing

circuit is often verifi ed against a behavioral

model simply because image aesthetics are

too diffi cult to capture in a data check set.

Our example scoreboard connects to the two

monitors, one for each player. A transaction is

expected at each monitor at the same time. The

“database” consists of the expected scores for

each player. Due to the simplicity of the DUT,

the verifi cation is performed using a behavioral

model. The function wins_over() determines

who wins given a pair of rps_t items obtained

from two transaction objects. We collect

two transactions, update the scores and

compare against the scores obtained from the

transactions. The scoreboard also has logic

to determine when the game is over, at which

point the test is done.

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com10

interface scoreboard(interface.ap_get_if ap1,
 interface.ap_get_if ap2,
 input int limit,
 output reg pass, done);
import rps_pkg::*;
int score1 = 0;
int score2 = 0;

 analysis_fi fo #(rps_mon_s) fi fo1(ap1);
 analysis_fi fo #(rps_mon_s) fi fo2(ap2);

 initial begin
 pass = 1;
 done = 0;
 end

rps_mon_s ev1, ev2;
rps_t rps1, rps2;

 function bit wins_over(rps_t p1, rps_t p2);
 return (p1 == ROCK && p2 == SCISSORS) ||
 (p1 == SCISSORS && p2 == PAPER) ||
 (p1 == PAPER && p2 == ROCK);
 endfunction
 always begin
 fi fo1.get(ev1);
 fi fo2.get(ev2);
 rps1 = ev1.rps;
 rps2 = ev2.rps;
 score1 += wins_over(rps1, rps2);
 score2 += wins_over(rps2, rps1);
 cg.sample();

 assert(score1 == ev1.score) else begin
 $error(«Player 1 score incorrect, expected %0d got %0d»,
 score1, ev1.score);
 pass = 0;
 end

 assert(score2 == ev2.score) else begin
 $error(«Player 2 score incorrect, expected %0d got %0d»,
 score2, ev2.score);
 pass = 0;
 end

 assert(score1 <= limit && score2 <= limit) else begin
 $error(«Score is over limit.»);
 pass = 0;
 end
 if (score1 == limit || score2 == limit) done = 1;
 $display;
 end
 endinterface

Coverage

Coverage is the component that brings

“closure” to the testbench. Coverage is required

to ensure that all interesting cases have been

tested. This is required in a constrained-random

environment because one cannot guarantee

that any given random testcase will test all

interesting aspects of DUT operation. Instead,

a few testcases often end up testing most of

the DUT, and specially constrained testcases

will be required to test the remaining corner

conditions. Candidates for coverage include

input and output transactions, state machines

inside the DUT, corner cases for FIFOs, etc.

Cross coverage (coverage of all combinations

of two otherwise independent events) is useful

for verifying that functional blocks operate in all

modes. Any suspected problem areas within

the DUT can also be covered.

The one coverage item that comes to mind in

our example is all possibilities of rock/scissors/

paper from both players. This is an example of

a cross-coverage item since the coverage data

is the Cartesian cross-product of more than

one data source. We have chosen to integrate

coverage into the scoreboard since the data

comes from the same transactions upon which

the scoreboard operates.

 covergroup rps_cover;
 coverpoint rps1;
 coverpoint rps2;
 cross rps1, rps2;
 endgroup

rps_cover cg = new;

The covergroup declaration defi nes what we

are to cover. It is then necessary to actually

instantiate the covergroup which is done

immediately below. This covergroup is set

up with an explicit sampling event, which is

executed once the scoreboard has obtained the

two transactions to cover.

Test Case

The testcase is where any test-specifi c

confi guration is performed. A testcase must

confi gure the DUT as well as any random

stimulus generators. The testcase should also

manage the test termination conditions.

interface test case(input rst, interface.confi gure cfg,
 output int limit, input pass, done);

 initial begin
 cfg.load = 0;
 limit = 20;
 @(posedge cfg.clk);
 while (rst) @(posedge cfg.clk);
 @(posedge cfg.clk);
 cfg.limit <= 20;
 cfg.load <= 1;
 @(posedge cfg.clk);
 cfg.load <= 0;
 @(posedge done);
 $display(“%s”, pass ? “Test PASSED” : “Test FAILED”);
 end

endinterface

After bringing the DUT out of reset, our

example testcase performs DUT confi guration:

it fi xes the score limit at 20. It could also

potentially randomize this item. The testcase

then waits until the scoreboard claims the test

is over, after which it displays the verdict.

There will be a different testcase fi le for each

test scenario. It is often the job of the simulation

compile/run script to select a test case to run.

Alternatively, all testcases may be compiled

into a single environment, such that the test to

run can be selected at run time. Techniques for

doing this are beyond the scope of this paper.

Top Level

The top-level fi le instantiates the DUT and

all other components. This does not differ in

construction from a typical Verilog top-level

fi le, except for possibly the instantiation and

use of interfaces. The “gen_fi fo” is a standard

component from our TLM library.

www.mentor.com 11

module top;
import rps_pkg::*;

 clkgen #(
 .PERIOD(10),
 .RESET_POLARITY(1’b1)
) clks();

wire clk = clks.clk;
wire rst = clks.reset;
int limit;
bit pass, done;

 player_if p1(clk), p2(clk);
 limit_if lif(clk);

 rps_dut dut(
 .clk, .rst,
 .p1, .p2, .lif
);
 gen_fi fo #(
 .T(rps_c),
 .BOUND(2)
) gen2drv1(), gen2drv2();

 gen gen1(gen2drv1);
 gen gen2(gen2drv2);

 driver drv1(
 .source(gen2drv1),
 .pins(p1)
);
 driver drv2(
 .source(gen2drv2),
 .pins(p2)
);
 play_mon mon1(
 .pins(p1),
 .rst
);
 play_mon mon2(
 .pins(p2),
 .rst
);
 scoreboard score(
 .ap1(mon1.ap),
 .ap2(mon2.ap),
 .limit,
 .pass,
 .done
);

 test case tc(
 .rst,
 .limit,
 .cfg(lif),
 .pass,
 .done
);

endmodule

CONCLUSIONS

This paper has presented a basic

SystemVerilog testbench using constrained-

random, coverage-driven, assertion-based

techniques. We used a SystemVerilog version

of the SystemC TLM library to manage the

interconnect. Although this example looks

complex, the test environment itself weighs

in at only 300 lines of code, and illustrates the

basic concepts and roles of each component.

The reader can use this testbench as a template

for more complex designs.

REFERENCES

 [1] http://www.worldrps.com/

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com12

ABSTRACT

In the quest to avoid respins and risk

while striving for better verifi cation with

fewer resources, many companies are

moving to assertion-based verifi cation (ABV)

methodologies. This article introduces the

benefi ts of ABV, as well as how to achieve

a highly effi cient ABV methodology while

understanding avoidable pitfalls. With a focus

on automation, optimization, debugging, and

coverage, readers will begin to understand

these are essential avenues to achieving higher

quality designs faster, through assertions.

INTRODUCTION

Missed market windows and respins.

Responsibility for either of these situations

strikes fear in even the most stoic of engineering

managers. And yet, many companies are still

struggling with how to avoid these situations.

A variety of issues can delay or destroy

projects. But with functional verifi cation taking

more cycles and dollars, and functional bugs

remaining the number one cause of respins,

insuffi cient verifi cation is one of the largest

culprits. Furthermore, it is increasingly diffi cult

to understand just how much verifi cation is

enough. The upshot is that many companies

do not perform adequate verifi cation on their

designs.

Efforts to rectify this situation with faster

simulation runtimes does not cut it. In response,

EDA companies are competing to develop the

most effective advanced functional verifi cation

methodologies, including constrained-random

data generation, coverage-driven verifi cation

(CDV), testbench automation (TBA), formal

verifi cation, and assertion-based verifi cation

(ABV). Leading-edge companies that have

employed ABV have already realized many

benefi ts, which can be summarized as higher

quality verifi cation with fewer resources in a

shorter amount of time.

However, as with any new methodology, there

is a learning curve and other upfront costs. In the

case of ABV, design and verifi cation engineers

must learn how to write and use assertions.

Engineering managers must also understand

how to leverage assertions with other advanced

verifi cation technologies and the most effective

ways to adopt them. Furthermore, assertions

require additional simulation cycles. This

problem is exacerbated by the fact that in order

for ABV to provide meaningful results, today’s

incredibly complex, multimillion gate designs

require tens, even hundreds of thousands of

assertions. Writing all of these assertions by

hand takes too much time and is not an effective

use of engineering resources.

Any particular ABV approach should and

will be judged by how well and how quickly it

delivers a highly effective design verifi cation

methodology. The standardization of design

and verifi cation languages is critical to this

effort. Standards enable tool and technology

interoperability and allow ABV to be adopted

incrementally. However, they are not enough.

Technologies and strategies that boost ABV

productivity are needed. The fi rst of these in-

volves the automation of the ABV methodology.

This includes the complementary use of

assertion libraries and assertion languages.

Libraries that increase the automation of

the assertions themselves, as well as ABV

itself, are integral to immediate and effective

adoption of assertions. The second strategy

consists of empirically evolved techniques that

immediately improve verifi cation productivity

and effectiveness through the incremental

adoption and targeted application of ABV.

Improving the Efficiency of Your ABV Methodology
by Neil Hand, Mentor Graphics Design Verifi cation and Test Division

www.mentor.com 13

ASSERTIONS IN BRIEF

In order to understand assertions, it is fi rst

important to look at problems with traditional

verifi cation approaches. As designs grow in

complexity, observability and controllability

become a problem. Verifi cation needs to be

able to control the circuit to known values,

propagate test stimulus through the design,

and then observe the design’s response to the

stimulus. Traditional simulation approaches

treat the device under test (DUT) as a black

box, providing stimulus and observing results

without a clear view of what is actually

happening inside the design. The larger and

more complex the design, the slower this

process becomes as more simulation cycles

are needed. Additionally, debugging functional

failures becomes prohibitively diffi cult due to

limited observability from the design.

Assertions, on the other hand, provide a

much clearer view into the design. Assertions

specify the intent of the design, and provide

direct controllability and observability to/from

the source of the problem. In the most basic

sense, assertions are like actionable comments.

In other words, while a designer is creating the

design, he can add comments about how the

design is supposed to work. Taking this one

step further, by adding assertions, he can

specify how the design is intended to work and

actually verify its behavior during simulation.

Assertions confi rm three distinct conditions.

First, they can specify proper operation of

the interface. In other words, assertions can

verify how a block communicates with other

blocks within the design. Second, assertions

can verify corner-case assumptions. For

example, assertions can check for unusual

circumstances that may not easily be

discovered during simulation. Third, assertions

can be used as coverage points, providing data

on how thoroughly various components have

been exercised during verifi cation.

Assertion-based verifi cation is the use

of assertions in simulation and/or formal

verifi cation. ABV compares the implementation

of a design against its assertions to verify that a

design functions as the designer intended.

GENERAL ABV METHODOLOGY
AND THE DESIGN CYCLE

In an ABV methodology that is targeting

general verifi cation improvements, the design

and verifi cation teams must be committed

to using a test plan that utilizes ABV. They

understand the value of assertions and add them

into the register-transfer level (RTL) code as they

develop it — the earlier the better. Design intent

and assumptions are captured early during the

design phase. Much of this is automated. For

some complex blocks, static formal verifi cation

is used to confi rm the assertions before the

code check-in for regression. In addition,

the verifi cation team adds protocol monitors

to the standard interfaces and sets up the

regression environment to run with assertions.

The verifi cation team may also add assertions

to capture events that are hard to test from a

pins-out perspective and that need to be tested

based on the test plan. The team aggregates the

statistical and coverage information to uncover

holes in the regression environment. Finally,

the verifi cation team runs dynamic formal

verifi cation on multiple complex blocks at the

sub-chip or cluster level.

Throughout the fl ow, engineers should

employ as much automation as possible to

ensure the highest achievable verifi cation

quality with the most effi cient use of resources

(both man hours and simulation cycles).

Additionally, standards should always be used

to avoid getting locked into a single vendor fl ow

and to ensure that assertions can be reused.

MOVING TOWARD EFFICIENT ABV

Standard Assertion Languages:

A Starting Point

Assertions can be written in any hardware

description language (HDL) or assertion

language. The Property Specifi cation Language

(PSL) and SystemVerilog are two standard

assertion languages developed and approved

by Accellera. Specially constructed for

writing assertions, these languages are more

effi cient than HDLs for this purpose. They are

also standardized to support interoperability.

Assertions written in SystemVerilog and PSL

can be parameterized, so it is often the case

that a small group of assertion experts can

write a custom assertion library for use on a

specifi c project. Assertions written in PSL or

SystemVerilog can reside in the HDL code within

the design or be kept as an associated fi le used

during the verifi cation process. Figure 1 gives

an example of PSL assertions that check input

handshake protocols.

In a typical process, designers generate

assertions during the design phase. Verifi cation

engineers then run assertions during verifi cation

in simulation and/or formal verifi cation.

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com14

Assertion Libraries:

A Step Toward Assertion Automation

While there is a need to generate some

assertions manually for custom circuitry

and the like, most assertions can actually be

generated from assertion libraries. Libraries

have certain advantages, particularly for new

users, in that they are easy to instantiate in the

design, requiring little effort on the designer’s

part to specify the desired behaviors. However,

those behaviors must be contained in the library.

Libraries are also high quality, since they are

created by experts and have been proven over

time by various teams on many projects.

Assertion libraries, such as Accellera’s

standard assertion library, Open Verifi cation

Library (OVL), contain common assertions in a

reusable format. Many of the OVL components

were donated by Mentor Graphics®. These

libraries provide pre-written, pre-verifi ed

assertions for common components, specifi ed

in either PSL or SVA languages.

To get started using standard OVL libraries,

visit the Accellera website and download the

free source code here: http://www.accellera.

o r g / a c t i v i t i e s / O V L _V S VA / O V L _V S VA .

Assertion Macros and Protocol Monitors:

Advanced Automation

The open, standards-based library from

Accellera is a good way to start automating

ABV. However, OVL currently offers only 32

components, more is needed to signifi cantly

reduce the number of assertions engineers

will have to write. Experience has shown that

a 10 million-gate design requires over 100,000

assertions to achieve a level of assertion

density to fully verify the design.

Fortunately, through a proprietary technology

known as Assertion Synthesis, CheckerWare®

assertion macros from 0-In provide a much higher

degree of automated assertion specifi cation and

maintenance. The Assertion Synthesis solution

greatly simplifi es the

specifi cation of assertions

by automatically extracting

design data, such as

clocks, resets, and variable

names, from RTL code.

Because they are based on the standard

verifi cation languages, CheckerWare assertion

macros satisfy the need for standardization.

They complement and are totally interoperable

with all standard assertion languages, including

PSL, SystemVerilog, and OVL. CheckerWare

assertion macros automatically generate from

2 to 4000 assertions and coverage points per

macro. This means that they cover about 90

percent of the logic you need to verify in your

design, vastly reducing the amount of time and

effort required to implement ABV.

Assertion macros take the idea of a library

one step further. While a library provides pre-

defi ned assertions for common components,

assertion macros are high-level compiler

directives for the automatic generation of

assertions based on supplied arguments and

information automatically extracted from

the design. In other words, assertion macros

automatically generate assertions for common

components and hook them up in the design.

Another productivity issue is maintaining

assertions. Assertions can suffer from

something referred to as “assertion rot.” For

example, if assertions are written early in the

design phase, and the design goes through

numerous iterations, many of the assertions

may no longer apply. In these cases, assertions

basically become dead code that clutter the

design and waste valuable simulation cycles.

Assertion Synthesis includes a unique design-

inferencing capability that allows assertions

to automatically adapt to design changes,

signifi cantly reducing assertion maintenance

as the design evolves.

www.mentor.com 15

The CheckerWare library also includes

several specialized protocol monitors. A

protocol monitor is a pre-packaged, pre-verifi ed

set of thorough tests for a standard interface

component. During simulation or formal

verifi cation, protocol monitors identify the

source of any incorrect protocol transactions.

For example, 0-In’s protocol monitor for the

PCI Express serial interconnect component

provides a total of 4000 assertions for

functional checking, coverage, and formal

constraints. For designs using PCI Express

components, this provides a fully automated

solution that quickly validates the interpretation

and implementation of the interface component

within the design. In addition to extensive

checking, these monitors also provide detailed

coverage data through numerous protocol

statistics that are tracked during verifi cation.

Assertion Optimization:

Reducing Simulation Time

Effi cient ABV methodologies include the

means to optimize assertions. Assertions

are used in part to reduce verifi cation effort.

However, without proper care, assertions have

an adverse affect on simulation time. To keep

simulation runtimes down, assertions must be

optimized.

CheckerWare creates assertions that are

synthesizable HDL, which are optimized for

performance in all simulators and for all assertion

types. As a result, a typical design with 100,000

assertions adds a mere 20 percent simulation

overhead, as opposed to the 5X slowdown

expected from other approaches. CheckerWare

further optimizes ABV by eliminating provable

assertions as well as redundant assertions so

that precious simulation cycles are not wasted

on assertions that do not need to be verifi ed.

Coverage Metrics:

Knowing When Verifi cation is “Done”

A key goal of verifi cation is doing enough of

it to ensure the design functions correctly. But

knowing when is “enough” is simply guesswork

unless verifi cation coverage is tracked. Metrics

and coverage are critical. The CheckerWare

library includes specifi c functional coverage

metrics related to the behaviors being checked.

Functional coverage measures verifi cation

thoroughness. In coverage-driven verifi cation

functional coverage metrics are used to

automatically record and analyze information

to ascertain whether (and how effectively)

a particular test verifi ed a given feature. That

information is fed back into the process to target

additional verifi cation efforts more effectively.

Coverage driven verifi cation requires the

specifi cation of coverage points, or specifi c

design behaviors, which must be exercised.

Besides checking for violations of design

intent, assertions are a primary method of

specifying these coverage points. While this

capability is available with manual creation

and standard libraries, it is more automated

and more comprehensive with CheckerWare.

This is partly due to the fact that CheckerWare

provides extensive capabilities to track and

manage verifi cation coverage provided by

assertions. The CheckerWare integrated

assertion manager reports on assertion density,

structural coverage for RTL components, and

transaction coverage for standard interfaces.

Assertion Density:

Knowing When You Have Enough

Similar to the coverage questions, the

question often asked when using assertions

is “how do I know I have enough assertions?”

Assertion density strives to answer this

question. Assertion density metrics determine

the effectiveness of the ABV methodology

by ensuring two things: 1) assertions exist

for all critical behaviors that must be verifi ed,

and 2) all parts of the design are adequately

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com16

covered by one or more assertions. Assertion

density points out blind spots in the design due

to inadequate assertion coverage, and it gives

a heuristic measure of functional complexity

versus assertion complexity.

Assertion density can be measured in several

ways. First, it can be measured in terms of

the number of active HDL constructs—the

complexity of the code—relative to the number

of assertions. To avoid skewing this measure, the

complexity of the assertion is also a factor. For

example, a redundant or provable assertion would

be considered trivial. Based on the experience

of many companies who have adopted ABV, a

good rule of thumb is 100 lines of HDL (or 25

statements) per assertion. Another measure of

assertion density is minimum sequential distance

(MSD), which measures the number of clock

cycles required for register values to propagate

to assertions. The fewer the clock cycles, the

easier it is for simulation or formal verifi cation to

evaluate the assertion. By default, CheckerWare

considers unobserved logic of greater than 20

clock cycles to be uncovered.

AN EFFICIENT ABV METHODOLOGY

ABV addresses two high-level design

challenges. First, as a general verifi cation

methodology, ABV adds a new level of

verifi cation thoroughness. Second, ABV can be

used specifi cally to target functional bugs that

are either missed altogether, or are very diffi cult

to fi nd with traditional verifi cation techniques.

The most effi cient use of ABV employs both

approaches, which are described in the following

sections.

ABV AND VERIFICATION
HOT SPOTS

Every complex design has a number of

verifi cation hot spots. Verifi cation hot spots are

those structures within or aspects of the design

Successful Use of ABV

National Semiconductor

National is a large semiconductor fi rm that designed a variety of devices. One group
within National designed I/O companion chips for that company’s processor line. This chip
contained a million gates of logic with an internal bus bridge that connected a new high-
bandwidth streaming internal bus to a traditional legacy bus. The protocol between these
buses was complex.

The group’s challenge was to fi nd bugs early enough in the design process to ensure no
schedule impact from bug fi xes. They opted to make extensive use of CheckerWare macros
and protocol monitors, running them in both block-level and chip-level simulations. They
also used 0-In dynamic formal verifi cation to expand upon simulation in search of deep,
corner-case bugs.

The result was National found many errors – from simple FIFO de-queuing issues to
more complex memory transaction issues. This verifi cation process yielded a chip with
no problems at fi rst silicon. The manager of the group was confi dent that this verifi cation
approach found bugs that had a high probability of making it into silicon.

AMD

A certain group within AMD develops complex chipsets for high-performance
microprocessors. These chips contained control and data structures with many deep corner
cases. The project managers were looking to improve their development process by adding
assertions and formal verifi cation. They started with just two chips. One was an I/O hub and
the other was a network controller that bridged from a PCI interface to a wireless Ethernet.

With the I/O hub chip, the company targeted their efforts on CDC verifi cation. They
used the automated 0-In CDC tool and easily found problematic areas, including a case of
reconvergence whereby two independently synchronized signals were combined into the
same logic.

In the network controller chip, the company used 200 macros and various monitors from
CheckerWare. The resulting assertions enabled engineers to increase the observability of
their designs, determine structural coverage metrics, and identify bugs at the source.

The design/verifi cation manager summed up the results nicely by saying, “We increased
our tape-out confi dence and helped improve our time-to-market, which translated directly
to project cost savings.”

Sun

Sun is a computer networking company that develops numerous ASIC and microprocessor
designs. They were one of the fi rst leading-edge companies to adopt an assertion-based
verifi cation methodology. Over the years Sun has expanded its ABV methodology to
include CheckerWare macros, protocol monitors, 0-In CDC verifi cation, and static formal
verifi cation. As a result, Sun has seen signifi cantly faster times-to-market.

More information on these stories can be found at:
http://www.mentor.com/products/fv/success/index.cfm.

www.mentor.com 17

that are prone to problems and diffi cult to

verify. The 80/20 rule dictates that 80 percent

of verifi cation time is spent on small portion

of the design (20 percent), which is diffi cult to

verify. The verifi cation diffi culty comes from

things such as deeply buried, diffi cult to control

logic sequential logic, interactions with state

machines or other external agents, and so on.

A verifi cation hot spot cannot be completely

verifi ed by simulation alone, due to the amount

and diffi culty of the simulation. Assertions used

with formal verifi cation techniques are vital to

effective hot spot verifi cation.

These hard-to-verify structures, or corner

cases, are called verifi cation hot spots. Using

their knowledge of the design, designers

introduce assertions that capture the design

intent and update their regression environment

to support ABV, which specifi cally targets

these hot spots. Designers perform simulation

regressions with these assertions on a

regular basis. Then, based on the structure

of the design, they use static or dynamic

formal verifi cation to confi rm the assertions

exhaustively. Throughout this process they use

as much automation as is available.

Through our experience working with

customers, we’ve found that the best way

to begin using ABV is by focusing on these

verifi cation hot spots. In this way, customers can

immediately realize the benefi ts while adopting

it in an incremental fashion by applying scarce

verifi cation resources to areas that need them

most. Bus arbiters and clock-domain crossings

are just two examples of hot spots that 0-In has

identifi ed.

A bus arbiter is an example of a common

design structure that needs special verifi cation

focus. Arbiters allow multiple devices to

share buses and are also found in a number

of other complex RTL components, such

as DMA controllers, schedulers, and traffi c

fi lters. CheckerWare supports the automated

implementation of both static and dynamic

formal verifi cation within an ABV methodology.

It includes formal constraints that make the

use of formal verifi cation both practical and

effective for these hotspots. Other formal

solutions require much more effort.

Clock-domain crossings (CDC) are another

aspect of today’s designs that are highly prone

to error. Most designs have more than one

clock, some have up to 10. Whenever a signal

crosses between domains, special care must

be taken to avoid CDC problems. Mentor’s

0-In CDC verifi cation solution can be built on

top of ABV. In combination with static design

checking, assertions can run in simulation

and formal verifi cation, so that the solution:

1) identifi es CDC signals, 2) checks for the

presence of synchronization logic, 3) verifi es

the correct operation of CDC protocols, and

4) measures whether all phase relationships

have been verifi ed. By encapsulating all this

verifi cation focused on one hot spot into a

succinct and automated package, designers

do not need to become CDC experts. All the

expertise is captured in a solution driven

primarily by assertions.

CONCLUSION

Companies adopt assertions to improve

verifi cation quality, detecting bugs locally and

more quickly than with traditional simulation

approaches. However, not all ABV strategies are

equally effective. Automation plays a key role in

determining the productivity and quality gains

that can be expected from an ABV solution.

Key aspects of an effi cient ABV methodology

include: 1) using pre-defi ned, pre-verifi ed

assertion macros and monitors for the majority

of the work, and standard languages for custom

assertions when needed; 2) reducing simulation

time through assertion optimization; 3) reducing

design time through automated assertion

maintenance; and 4) supporting coverage

driven verifi cation efforts to understand when

enough verifi cation has been done. Likewise,

assertions can be used to generally improve

verifi cation thoroughness, or they can be used

to specifi cally target verifi cation hot spots. A

combination of both is recommended.

By adopting an effi cient assertion-based

verifi cation methodology — one that heavily

utilizes automation — companies can quickly

and easily improve their verifi cation quality,

while avoiding the addition of time, cost, and

risk to the design cycle.

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com18

INTRODUCTION

In the current verifi cation environment

engineers write directed tests to verify the

functionality of their design. Once functionality

has been verifi ed they add more tests to the

suite. Quite often this process is time consuming

and many corner cases are missed.

Rather than require the verifi cation engineer

to write tests to check each feature individually,

constrained-random verifi cation (CRV)

effectively allows a single test to check multiple

features. With this methodology, each “test”

can check many possible scenarios, and the

simulator itself chooses a specifi c scenario for

each invocation. This can be an extraordinarily

powerful verifi cation methodology, but it is one

that is not supported well by either standard

Verilog or VHDL.

SystemVerilog has been designed specifi cally

to support this methodology. This article will

provide some of the basics for users to start

coding effi ciently with SystemVerilog.

OVERVIEW OF CRV METH-
ODOLOGY DIRECTED TESTING

Directed testing is a term used when the

engineer creates the stimulus for every single

clock cycle or transaction that might span

multiple clock cycles. Each cycle or group

of cycles is directed at verifying a particular

feature selected by the engineer.

Because of the straightforward nature of

directed tests, they are fairly easy to write.

Unfortunately, by defi nition, they only address

the explicit scenarios predicted by the verifi cation

engineer. As designs get more complex, it

becomes harder to write directed tests to cover

all of the possible scenarios and corner cases,

both because the expected response becomes

harder to predict and because the corner cases

become harder to hit, if they can be predicted at

all. Such tests can be improved somewhat by

adding randomization, such as writing random

values to a memory in addition to, or instead

of, a walking-ones pattern. These tests are

still inherently directed . The system functions

$random or $dist_uniform in Verilog provide a

simple way of fi lling bits with random numbers.

They can also be used to randomize delays or

repetition counts.

CONSTRAINED RANDOM TESTING

The idea of feeding totally random stimuli

into a design seems ineffi cient, and it would

be if there were no constraints on the random

numbers the generators are allowed to

produce. The idea behind CRV is that both the

data and the transactions generated by the test

are chosen at random from a set of valid, or

constrained, possibilities.

DIRECTING TESTS FROM
CONSTRAINED RANDOM

In a constrained random environment, a

directed test is achieved by tightly constraining

the choices so that a single scenario is exercised.

Thus, a “sanity test” in this environment can be

achieved by constraining the test to generate a

single write to a specifi ed address followed by

a single read from the same address. Once this

sanity test is validated, proving that the read/

write interface works properly, removing the

constraints allows a full broad-spectrum test

to occur in which all of the registers are read/

written in random order, with random data, and

in all different modes. When a problem occurs,

it is easy to add new constraints to the test in

order to focus on the particulars that caused the

problem so it can be debugged.

Directed tests are very useful in many

circumstances where it may be easier to write

a directed test to guarantee that the design

reaches a certain state quickly, rather than

rely on random behavior to achieve the desired

results.

PROCESSOR GENERATED
CONSTRAINED RANDOM
BUS TRAFFIC

One powerful method for generating stimulus

is to program the designs embedded processor

to perform this task. Questa offers cycle-

accurate models for most ARM embedded

cores which support generation of constrained

random AMBA bus cycles. The user specifi es

constraints for the address space, data range,

bus cycle types and number of cycles. The

cycle-accurate model then randomly generates

AMBA bus cycles that fall within these

boundaries.

Most AMBA bus slaves are so structured that

the value of blasting them with random cycles

is probably low, but this feature is useful for

generating bus traffi c from the processor while

other AMBA masters arbitrate for the bus and

perform their data transfers. Loading up the

AMBA bus with processor driven cycles is more

likely to expose any arbitration or bus bandwidth

problems than having an AMBA master make

transfers on a bus that’s dead silent.

Constrained Random Stimulus Generation in Questa Using SystemVerilog
by Raghu Ardeishar, Mentor Graphics Design Verifi cation and Test Division

www.mentor.com 19

Users can ease into CR testing methodology

incrementally using inline constraints. Consider

the following example in standard verilog.

Line 4 creates random values for “data” but

there is not much control over what you get. In

Verilog 2001 $random provides a mechanism

for generating random numbers. The function

returns a new 32-bit random number each time

it is called.

1. initial begin
2. for(i=0;i<32;i++) begin
3. addr = i;
4. data = $random();
5. if(addr < 16)
6. data[7] = 1’b1;
7. do_write(addr,data);
8. end
9. for(i=0;i<32;i++) begin
10. addr = i;
11. do_read(addr,data);
12. assert(data == exp[i]);
13. end

14. end

Using randomize..with we can enhance

the quality of the data we get as follows. You

can randomize the “addr” and “data” with the

constraint that “addr” is always less than 32 and

then create a list of those addresses (line 3 and

5). In SystemVerilog the randomize function is

provided which is similar to the $random seen

before but with the added benefi t that you can

guide the random number generation using

constraints.

You can then limit your randomization to only

those addresses in the list previously created

while doing a write (line 9 and 10) thus making

sure that you do not read from an address

which has not been written to.

1. initial begin
2. for (int i = 0; i < 32; i++) begin
3. randomize(addr, data) with { addr < 32;}
4. if (addr<16) data[7] == 1’b1; });
5. addr_list[addr] = addr;
6. do_write(addr,data);
7. end
8. for (int i = 0; i < 32; i++) begin
9. randomize(addr) with { addr inside {addr_list}; };
10. do_read(addr,data);
11. assert(data == exp[addr]);
12. end

13. end

RANDOMIZATION WITH OBJECT
ORIENTED PROGRAMMING

In SystemVerilog, random variables, random

number generators, and constraints are

integrated into the object oriented class system.

Here are just a few important concepts.

OBJECT ORIENTED
PROGRAMMING BASICS

In its simplest form, a class is like a structure,

an encapsulation of data. In SystemVerilog,

classes are dynamically created, whereas

structures are created when they are declared.

Please reference fi gure 1 below.

Classes are dynamic objects in SystemVerilog.

The class objects have to constructed using

the new() operator. Unlike structs classes can

contain member functions and constraints.

The member functions act on class data and

constraints are used for randomizing the data.

Struct data can be randomized too but you don

not have the control because you cannot embed

constraints to control randomization.

SystemVerilog uses the rand modifi er to

distinguish the random variables from the

non-random variables. In line 2 and 3 in

class TBase if the variables “a” and “b” did

not have the rand keyword they would not

be randomized. A constraint is added as a

named list of expressions, declared using the

constraint keyword.

The real power of object oriented pro-

gramming is achieved through the use of

inheritance. A new class may be defi ned as a

derivative of a previously-defi ned base class,

from which it inherits everything defi ned in the

base class.

For example if we have a base class:

1. class TBase;
2. rand logic [3:0] a;
3. rand logic [3:0] b;
4. constraint c1 { a < 4’b1100; }
5. constraint c2 { b < 4’b1101; }

6. endclass

class Packet_c;
bit [7:0] address; // property
bit [31:0] data;
endclass : Packet_c

typedef struct {
 bit [7:0] address; // member
 bit [31:0] data;
 } Packet_s;

Packet_c P; // declares a handle to a Packet
P = new(); // Constructs an instance of
a Packet . P is a reference to a Packet
P.data = 1234; // Assign class members

Packet_s P; //declares an instance of P
P.data = 1234; // Assign struct members

Figure 1.

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com20

This class can be extended by the following

class:

1. class TDerived extends TBase;
2. constraint c3 { a > b ; }
3. constraint c4 { a < b ; }
4. constraint c5 { a + b == 4’b1111; }
5. endclass

Now when we instantiate the derived class

it has all the constraints c1 thru c5. It is true

that some of them are contradictory but using

another feature in SystemVerilog we can turn

the constraints on and off selectively while

randomizing the data.

Guideline: Using Inheritance you can add

and override constraints as your verifi cation

environment grows. This allows for modular

testing and reuse.

 This is in contrast to adding all your

constraints to your base class in which case

your base class may have to be rewritten for

many tests.

DYNAMICALLY MODIFYING
CONSTRAINTS

As defi ned above if we wanted to randomize

an object of type Tderived we would get an error

because of confl icting constraints. We can

solve the problem using constraint_mode() as

follows:

1. TDerived derived = new;
2. derived.c3.constraint_mode(0);
3. status = derived.randomize();
4. derived.c3.constraint_mode(1);
5. derived.c4.constraint_mode(0);

6. status = derived.randomize();

In line 1 the object is instantiated. In line 2 the

constraint c3 is turned off. So only c1, c2, c4

and c5 are valid when line 3 executes. Similarly

line 4 and 5 turns on constraint c3 and turns

off c4 before further randomizing. Thus we can

explore several possibilities using a single class

and constraint_mode().

We saw above that constraints can be

turned off and on using constraint_mode().

The same can be done with variables using

rand_mode().

CONSTRAINT SOLVING

Random numbers are generated with at least

one constraint, the size (or number of bits) to

be randomized. The size determines the total

number of possible values that the random

variable may have; i.e., the size of the solution

space. A constraint is basically a Boolean

expression that is required to be true for the

values the solver picks. A constraint typically

reduces the size of the solution space.

A constraint expression can be a mixture of

random and non-random variables. Non-random

variables make the constraint state-dependent,

meaning that one can dynamically modify

the constraints during the test, based on the

values of other variables. If a random variable

has no constraints, or appears in constraints

with no other random variables, it is called a

scalar random variable. Its solution space can

be separated and solved independently of other

random variables.

The most important concept in CRV is to

understand how the solution space is managed

based on a set of given constraints. Consider

the following.

If we have we have 2 variables X and X and X Y both Y both Y

3 bits wide:

rand bit [2:0] X,Y;
constraint less_than { X < Y;}

The solutions are (28 possible):

if Y = 7 X = 6 or 5 or 4 or 3 or 2 or 1 or 0
if Y = 6 X = 5 or 4 or 3 or 2 or 1 or 0
if Y = 5 X = 4 or 3 or 2 or 1 or 0
if Y = 4 X = 3 or 2 or 1 or 0
if Y = 3 X = 2 or 1 or 0
if Y = 2 X = 1 or 0
if Y = 1 X = 0

The points to remember about the constraint

{X < Y} are:

• X and Y are solved by the solver

at the same time

• constraints are bi-directional i.e, X

determines Y and Y determines X in a

constraint operator. This is in contrast to

conventional programming where X will

determine Y.

• Conventional thinking implies the chance

of getting Y = 7 is the same as getting Y =

1, But

• Probability of getting (X,Y) = (6,7)

or (5,7) etc is the same as (0,1).

From the table above there are

28 possible solutions. Out of the

28 possible solutions there is only 1

solution in which Y is 1 hence

- Probability of Y=1 => 1/28

www.mentor.com 21

Similarly in the solution set there are

(from the 1st line of the table) 7 possible

solutions for Y = 7 where X ranges from

6 to 0 hence:

- Probability of Y=7 => 7/28

If you wanted an even probability of X and Y

without disturbing the solution space then you

would add the following constraint along with

the previous one:

constraint sol_Yb4X {solve Y before X;}

• Now the solutions remain the same

as before i.e, 28 possible solutions.

• But you are telling the solver to fi rst pick Y

and then pick an X from the solution space

which satisfi es the constraint.

• That creates an even probability of

Y from 1 thru 7.

There is another route you can take by

randomizing X and Y separately and later

constraining X < Y. But that

• Changes the solution space as X and

Y are no longer related

• for example solver could pick Y = 0

Causing FAILURE

• But it is a potentially faster solution as the

number of interacting variables decrease.

Let’s look at a few operators in SystemVerilog

which are used in writing constraints.

//Implication operator ->
 rand bit s;
 rand bit [2:0] d;
 constraint cons { s -> d == 0;}

The above constraint “cons” (line 3) reads

if “s” is true then “d” is 0 as if “s” determines

“d”.But like the constraint we looked at before,

the constraint implication operator, ->, is

bi-directional. The values of “s” and “d” are

determined together.

The important point to remember is that

“s” does NOT determine “d”. In a conventional

“if” statement “if s then d” the value of s

determines the value of d. But in this case s and

d are chosen together and the solution picked

randomly from the solution space.

The 9 possible values in the solution space

are :

if s = 0 d = 7 or 6 or 5 or 4 or 3 or 2 or 1 or 0
if s = 1 d = 0

The (s,d) pairs will be (0,0), (0,1),

(0,2),(0,3),(0,4),(0,5), (0,6),(0,7) and (1,0)

The probability of picking s = 1 will be 1

in 9 —> Not what you thought. If this were a

conventional “if” statement then you would get

s=0 with the same probability as s=1.

However if you wanted to keep the pick “s”

true with a probability of 50% but not change

the solution space then you can advise the

solver by adding the following constraint to the

above constraint

• constraint cons_plus {solve s before d;}

This additional constraint does NOT alter the

solution space. Now the probability of picking

“s” 1 is 50% and “s” 0 is 50%.

In the example below, there is an implied

constraint in the enum variable on line 7 that

the op must be one of READ, WRITE, or NOP.

 1. typedef bit [7:0] addr_t;
 2. typedef enum {READ,WRITE,NOP} kind;
 3.
 4. class Packet_c;
 5. rand addr_t address;
 6. rand bit [31:0] data;
 7. rand kind op;
 8. constraint data_range {
 9. (op == READ) -> data inside
 {[1:100]};
10. op == WRITE) -> data inside
 {[101:255]};
11. (op == NOP) -> data inside
 {0};
12. }
13. endclass : Packet_c

If op equals READ, there are 100 possible

values for data that satisfy the fi rst implication.

If op equals WRITE, there are 155 possible

values for data that satisfy the second

implication. However, if op equals NOP, there

is only one possible value of data that satisfi es

the third implication. That makes a total of 256

possible solutions. Since only 1 out of 256

possible values for data would satisfy the third

implication, op has only a 0.004 chance of

having the value NOP.

Similar to the previous example , the

randomization process involves calculating

a solution space, then randomly picking a

single solution. The solution is then written

to the random variables as a set. Normally

the solver picks each solution with a uniform

chance. We can also use “solve before” like the

previous example to advice the solver. When

modifying the previous example to solve for

op before data, READ, WRITE, and NOP will

have a uniform chance of being chosen before

choosing a value for data.

 cont. om page 22

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com22

1. class Packet_c;
2. rand addr_t address;
3. rand bit [31:0] data;
4. rand kind op;
5. constraint data_range {
6. (op == READ) -> data inside
 {[1:100]};
7. (op == WRITE) -> data inside
 {[101:300]};
8. (op == NOP) -> data inside
 {0};
9. }
10. constraint order {solve op before data;}
11. endclass : Packet_c

Instead of the solve-before constraint, a

distribution constraint adds weighting factors

for choosing values, in addition to advising

which random variables should have values

chosen fi rst. It does this without modifying the

solution space, except when a weight is zero. In

the example below, the distribution constraint

on line 10 defi nes that op has a 2 in 5 chance

(40%) of choosing READ, a 40% chance of

choosing WRITE, and a 1 in 5 chance (20%) of

choosing NOP.

1. class Packet_c;
 2. rand addr_t address;
 3. rand bit [31:0] data;
 4. rand kind op;
 5. constraint data_range {
 6. (op == READ) -> data inside
 {[1:100]};
 7.. (op == WRITE) -> data inside
 {[101:300]};
 8.. (op == NOP) -> data inside
 {0};
 9.. }
10. constraint op_dist { op dist {READ := 2,
 WRITE := 2 NOP := };}
11. endclass : Packet_c

Guideline: Use a distribution constraint on

only one random variable in a set of interrelated

random variables.

It is very diffi cult to calculate the probability

of choosing a value for a random variable when

there is what appear to be multiple, confl icting

distribution constraints.

Distribution constraints are used after

creating the solution space and are not

guaranteed to be satisfi ed.

FUNCTIONS IN CONSTRAINTS
Constraint Expressions which are

complicated can be simplifi ed using functions

in constraints. For example, if you wanted to

compute the number of “ones” in a packed

array of bits you could do the following:

 1. rand bit[3:0] s;
 2. rand bit [3:0] d;
 3. constraint c1 { if((((s>>3)&1) +
 ((s>>2)&1) +
 ((s>>1)&1) +

 ((s>>0)&1)) > 2) d == 0;}

Or you could write a function as shown below:

 1. function automatic int count_ones (bit [3:0] w);
 2. for(count_ones = 0; w != 0; w = w >> 1)
 3. count_ones += w & 1’b1;
 4. endfunction

 5. class foo;
 6. rand bit[3:0] s;
 7. rand bit [3:0] d;
 8. constraint c2 { if(count_ones(s) > 2) d == 0;}
 9. endclass

A few very important concepts need to be

emphasized:

Constraints c2(line8) and c1 (line3) look

similar but act differently though seemingly

achieving the same goal.

In the fi rst example the constraint c1 is inlined

and the random variables “s” and “d” are solved

together. There is NO ordering implied.

However in the second example the function

call forces a variable ordering. The argument of

the function ie, “s” has to be solved before “d”

and independent of it (unlike the “solve before”

operator). The function call DOES disturb the

solution space by dividing it.

EFFICIENCY IN WRITING
CONSTRAINTS

Guideline: Keep the total number of related

random variables down to the absolute

minimum.

The amount of time needed to solve a

constraint increases as the total number of

interrelated bits of random variables that must

be solved for one solution space increases. Try

to break up the interdependencies of random

variable constraints by randomizing in stages.

For example, if you want to generate a sorted

list of 100 random variables, you could create

an iterative constraint along the likes of Ai<

Ai+1.

1. rand bit [9:0] arr[100];
2. constraint c { foreach(arr[i]) (i < 99) ->
 (arr[i] < arr[i+1]) ; }

However, this would create a single random

variable of 1000 bits, most likely unsolvable in

any reasonable amount of CPU time. A better

solution is to generate 100 independent 10 bit

random numbers, then sort them procedurally

afterwards.

Guideline: Try not to use multiplication and

division using random numbers in constraints.

www.mentor.com 23

If you were to think of the solution space,

think of its construction like that of a synthesis

tool. Like in a synthesis tool, multiplication and

divisions using variables, which are declared as

rand are very expensive.

1. rand bit [11:0] a, b;
2. constraint c1 {a * b < 40;}

Guideline: Try not to call randomize thousands

of times on classes. If you have to, try replacing

the class with a struct. Classes have function

calls associated with them such pre-randomize,

post-randomize, new() etc which makes them

inherently slower than an equivalent struct.

Consider the following:

1. class dot;
2. rand bit [15:0] A;
3. rand bit [15:0] B;
4. rand bit [15:0] C;
5. constraint cA { C == B + A ;}
6. endclass
7.
8. class men_line;
9. rand color colorb;
10. rand dot a_of_dots[];
11. endclass: men_line
12.
13. class frame;
14. rand men_line a_of_lines[];
15. function new(int height,int width) ;
16. a_of_lines = new[height];
17. for(int i = 0; i < height; i++)
18. begin
19. a_of_lines[i] = new;
20. a_of_lines[i].a_of_dots = new[width];
21. for(int j = 0; j < width; j++)
22. a_of_lines[i].a_of_dots[j] = new;
23. end
24. endfunction
25.

26. endclass : frame

We are creating a 2-Dimensional Dynamic

array which is going to be randomized. The base

class is dot which has 3 elements each 16 bits

wide and a constraint. That is instantiated in a

class men_line as variable a_of_dots which is

a dynamic array. That is further instantiated in

dynamic array a_of_lines in class frame.

When we instantiate an object of class frame

the constructor is passed arguments to make

the 2 dynamic arrays.

16 a_of_lines = new[height]

e.g,

 a_of_lines = new[3]

Creates an array a_of_lines with 3 elements

but since the element is of type men_line which

is a class the entry is only a class handle with a

“null” value. hence the statement:

19 a_of_lines[i] = new;

for each element of the array.

Similarly we construct the array a_of_dots :

20 a_of_lines[i].a_of_dots = new[width];

Creates the entire a_of_dots array. But since

each element of a_of_dots is a class of type

dot the entry is a null class handle and the

following extra step is needed for each element

of the array.

22 a_of_lines[i].a_of_dots[j] = new;

Now the array elements are no longer null

we can randomize the data using the randomize

command.

 frame = fr;
 fr = new(3,3);
 result = fr.randomize();

If the fr array is small this operation is fr array is small this operation is fr

relatively quick. However if fr is large then you fr is large then you fr

might consider a much quicker approach (if

you can give up the constraints in class dot) by

replacing class dot by :

1. typedef struct packed {
 2. bit [15:0] A;
3. bit [15:0] B;
4. bit [15:0] C;
5. } dot;

Since dot is no longer a class the new()

function can be simplifi ed as:

 1. function new(int height,int width) ;
 2. a_of_lines = new[height];
 3. for(int i = 0; i < height; i++)
 4. begin
 5. a_of_lines[i] = new;
 6. a_of_lines[i].a_of_dots = new[width];
 7. end
 8. endfunction

 cont. om page 24 cont. om page 24 cont. om page 2

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com24

DEBUGGING OF CONSTRAINTS

Questa offers command line switches to aid

the debugging effort during randomization.

Guideline: Always check the return value

from randomize.

If the constraints placed on the random

variables in a class have no solution, randomize()

will return zero. It is critical to check the return

value so that any problems can be reported to

the user. An immediate assertion can be useful

for reporting these problems.

assert (P.randomize()) else $error(“No solutions

for P.randomize”);

Simulator Command-line Switches

-solvefaildebug

When randomize fails, run vsim with the

solvefaildebug switch and questa will display

the minimum set of constraints that caused the

randomize() call to fail. For example:

 1. class TFoo;
 2. rand bit [5:0] a, b, c;
 3. constraint c1 { a < b; }
 4. constraint c2 { b < c; }
 5. constraint c3 { a < 23; }
 6. constraint c4 { b > 12; }
 7. constraint c5 { c == 20; }
 8. endclass
 9. class TBar extends TFoo;
10. constraint c0 { a == c; }
11. endclass
12. TBar f = new;
13. int status;
14. $display(“status = f.randomize();”);
15. assert(f.randomize());

Questa outputs the following diagnostic error

message:

foo.sv(15): randomize() failed due to
confl icts between the following constraints:
foo.sv(4): ((f.a)<(f.b))
foo.sv(5): ((f.b)<(f.c))
foo.sv(12): ((f.a)==(f.c))

-solveverbose 2

Gives an idea of the solution space, what

random variables are being solved, the size of

the variables and the order of the variables.

CONCLUSION

The constrained random verifi cation

methodology offers signifi cant advantages over

the directed approach. Extra effort in building the

infrastructure up front yields huge yields going

forwards. This combined with an assertion

based testing paradigm is one of the best

ways of testing big complex systems. Questa

today supports the SystemVerilog testbench

features and assertion based methodology

and offers a powerful single kernel verifi cation

environment.

www.mentor.com 25

It has become increasingly important to

carry over models and testbenches from one

level of abstraction to another for the design and

verifi cation of system designs. This capability

enables reuse with a scalable methodology,

allowing engineering teams to leverage the

particular strengths of different modeling

domains. For example, behavioral testbenches

or system-reference models that are developed

in a high-level verifi cation language (HVL)

[1,2,4] can be reused to verify the design-

under-test (DUT) hardware models described

in a hardware description language (HDL). But

an intermediate modeling level is required to

bridge these two levels of abstraction.

This article focuses on a solution that applies

inter-language function calls (ILFCs) in order

to couple untimed models written in an HVL

with timed models written specifi cally in an

HDL. This approach combines the testbench-

modeling strengths of HVL with the DUT-

modeling strengths of HDL. HVL environments,

such as SystemC, are ideal for transaction-

oriented manipulations among untimed,

communicating threads. HDLs like Verilog and

VHDL are more suited for the timed, signal-

oriented manipulations that are used to model

concurrent hardware at the cycle-accurate,

register transfer level (RTL) of abstraction or

below.

ILFCs have been standardized in

SystemVerilog 3.1. They are referred to therein

as the Direct Programming Interface (DPI) [3].

The SystemVerilog DPI allows the creation of

two types of functions:

• Imported functions – defi ned in C,

called from HDL

• Exported functions – defi ned in HDL,

called from C

Imported and exported functions provide

an ideal mechanism over which to implement

untimed, transaction-based synchronizations

and data exchanges between models in the

HVL domain and transactors in the HDL

domain. By carefully crafting DPI function-call

interfaces between HDL and C models, function

arguments can serve as untimed transactions.

Such transactions fl ow in either the C-to-HDL

or HDL-to-C directions between C models and

transactors. A variation of the SystemVerilog

DPI also was adapted for use with the Verilog

2001 HDL. This implementation was used to

prototype the Ethernet-packet-router design

described in this article.

Recently, the Transaction Level Modeling

Working Group of the Open SystemC Initiative

(OSCI-TLMWG) formalized a description of this

mixed-abstraction model [8]. It then developed

an application-programming-interface (API)

bridge between the two levels of abstraction.

The TLMWG defi ned a three-level modeling

paradigm. The top level is defi ned as the

programmer’s view (PV). It denotes an untimed

level of abstraction for algorithmic, software-

oriented modeling. The bottom level is defi ned

as the cycle-callable (CC) level. It denotes the

timed, RT level of abstraction and below. In

between these two levels is the programmer’s

view + timing (PV+T) level. Models written at

this level create an abstraction bridge between

the PV and CC levels. After all, the PV+T models

interface with CC models through timing shells

and with PV models at the transaction level.

Such bridging layers are often referred to as

transactors.

Although the TLMWG has developed an API

bridge between the two modeling domains, our

focus will be on an HDL-transactor, API-less

approach. Traditional API-based approaches,

such as co-simulation and HVL-based

transactors, have fallen short because they are

cumbersome, ineffi cient, diffi cult to use, and/or

don’t promote reuse. Conversely, the TLMWG

paradigm provides a useful framework and

terminology for discussing the methodology

put forward in this article.

AN HDL-BASED METHODOLOGY

HVLs offer several benefi ts: algorithms are

easily and quickly prototyped, and architectural

exploration is feasible. In addition, system-

reference models, which can be used for on-the-

fl y comparisons to hardware models simulated

at lower levels of abstraction, are relatively easy

to develop. SystemC [1,6,7] is a good example

of an HVL modeling environment. Although it

was chosen for the examples in this article,

the techniques described herein are general

enough to be applied to a class of concurrent,

high-performance, software-centric, non-HDL,

untimed testbench-modeling environments.

All of these HVL environments provide a

means of writing concurrent models, which the

TLMWG refers to as communicating processes

[8]. This capability allows large collections of

inter-communicating models to be simulated

simultaneously. SystemC has the advantage of

being fundamentally C++. Besides providing

concurrency, it comes with good support for a

large number of resource libraries that can be

benefi cial to high-level testbenches. SystemC

Bridging an Untimed High-Level Verification Language with Timed HDL
Modeling Environments—The Advantages of Transaction-Based Verification
By John Stickley, Mentor Emulation Division

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com26

also provides easy access to system resources

like networks, graphical user interfaces (GUIs),

and bit-mapped displays.

Using a relatively small set of SystemC

constructs, such as static and dynamic threads,

inter-process communication mechanisms and

directed random testing support can create

powerful testbenches. These testbenches are

modeled using the untimed level of abstraction.

Higher complexity in testbench modeling can be

confi ned to higher abstraction languages. In the

early phases of a project, one also can model

the entire DUT or parts of it at this level. The

engineer thereby creates a reference model that

can later be used to verify against the hardware

prototype.

Gradually, the DUT can be migrated to

hardware modeled in HDL at the timed level of

abstraction. It can be coupled to the original

testbench using a simple transaction-oriented

function-call interface. That interface will create

transactors that provide an abstraction bridge

between the HVL and HDL models.

Using this technique is easier and more

fl exible than other HVL-to-HDL interfacing

techniques because it is API-less. The interface

is fully described in terms of simple-to-use,

user-defi ned functions rather than diffi cult-

to-use, signal-level APIs like PLI and VPI.

By supporting this inter-language function-

calling mechanism, the whole requirement for

a complex, fi xed-API is sidestepped. Abstract

transactions that originate in the testbench

become simple function-call arguments passed

to and from the HDL transactor code. That code

is capable of transforming them to timed RTL

function protocols, which are suitable for direct

interaction with the DUT.

The best way to couple abstraction levels

is to force a purely transaction-oriented

interface directly from the untimed HVL into

the HDL domain. In other words, use HDL-

based transactors which are fully written in

HDL—not HVL. This key advantage satisfi es

both ease-of-use and reusability objectives.

Transactors deal directly with signal activity,

so it’s more natural and intuitive for a typical

HDL user to want to model such activity in an

HDL. Additionally, HDL transactors easily scale

to any HVL environment that supports the DPI

function-call standard and can be fully reused

by such an environment.

Untimed concurrent interactions can be

elegantly modeled in a testbench using high-

level constructs. Examples of such constructs

include those offered by SystemC, such as

threads, mutexes, semaphores, barriers,

queues, and directed random data generation.

When these models need to interface to the

DUT via an abstraction bridge, they can do

so by passing whole transactions to an HDL

resident transactor. That transactor can then

perform the necessary timed interactions with

the DUT.

Figure 1 shows an example of a system that

was initially prototyped in an HVL, such as

SystemC. During the architectural-exploration

phase, the design, testbench, and DUT are

modeled entirely in HVL at the untimed level

of abstraction. The design can be viewed as

a hierarchical collection of modules (SystemC

SC_MODULES, to be specifi c). Those modules

are interconnected via abstract transaction

channels (modeled using SystemC classes

sc_buffer<>, sc_in<>, and sc_out<>).

The transaction channels are represented as

straight black arrows. Generally, each arrow

depicts the fl ow direction of the transaction.

Contained among the modules are a number

of static and dynamic threads that interact with

each other. Those threads are represented in

Figure 1 as C-shaped black arrows. The main

driver thread fi rst confi gures the router core

for proper operation using a special interface,

which is called the Pbus interface. The testbench

www.mentor.com 27

then enters its main loop. There, it generates a

random number of packets. Each packet has

a randomly selected source port, destination

port, payload length, and payload content. For

each packet generated, the testbench driver

dynamically spawns stimulus and monitor

threads on the selected input and output ports,

respectively.

The stimulus threads drive the packets via

the MiiMaster module into the InPort interface

modules in the DUT. Generated packets also

are sent to an expected output queue. Monitor

threads in the MiiSlave module monitor the

outgoing packets coming from the OutPort

interface modules of the DUT. The threads

then compare what they receive with what is

expected in the output queues.

Each MiiMaster interface is treated as a

shared resource. Access to this resource is

arbitrated using a mutex lock that utilizes the

SystemC sc_mutex class. If multiple threads

are spawned that send packets on a given

interface, only one can be active at a time.

Pending threads will only apply their stimuli

when they acquire the requested

lock. In Figure 1, this stacking of

pending threads is depicted with

multiple, C-shaped black arrows

on one of the MiiMaster ports.

The spawned threads remain

pending until their packets have

been successfully sent and

received for comparison on the

output side of the DUT. After this

step, the stimulus and monitor

threads die. They are replaced

by other pending threads.

The testbench provides a

fl exible testing harness for the

system, which is modeled at a

high level of abstraction. All data

is exchanged among modules in

the form of transactions moving

over data channels. Early in the architectural-

exploration phase of the design cycle, the DUT

also is modeled at the untimed transaction

level. A number of architectural trade-offs can

be quickly prototyped in this confi guration.

At some point, the DUT in Figure 1 must be

implemented in hardware. Often times, it will

be implemented in HDL at the cycle-accurate,

RTL of abstraction. When this implementation

happens, the untimed testbench environment

should ideally be preserved without alteration.

The same testbench can then be reused to test

the hardware implementation of the design.

At this point, the testbench and DUT will be of

differing abstractions. An abstraction bridge is

therefore required at the boundary between the

DUT and the testbench. Figure 2 shows how one

might go about bridging abstraction between

the untimed MiiMaster stimulus module and the

now-timed RTL InPort interface module.

The process of bridging abstraction can be

summarized as follows:

• “Pry apart” the modules that

communicate across the boundary.

• Progressively transform some or all of

the DUT from untimed HVL models to timed

RTL HDL cycle-callable models.

• Insert an abstraction bridge or

transactor that has compatible interfaces

to both the untimed testbench and the now-

timed DUT.

Figure 3 (below) shows the 4-port Ethernet-

packet-router system after the DUT has been

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com28

migrated to hardware. The DUT, which is

represented in yellow, is modeled in HDL at the

timed, cycle-accurate, RT level of abstraction.

The transactor modules, which are shown in

green, also are modeled in HDL at the RT level

of abstraction. The blue shaded area represents

the original, unaltered testbench that was

modeled in untimed HVL.

In effect, two disjointed hierarchies make

up the simulated system. The untimed

testbench remains in its own HVL hierarchy.

Independently, the RTL DUT and transactors

are combined in their HDL hierarchy. The two

hierarchies are loosely coupled by transaction-

based abstraction bridges (i.e., transactors).

STIMULUS SOURCE

Figure 5 shows a depiction of what the inside

of the MiiMaster stimulus source transactor that MiiMaster stimulus source transactor that MiiMaster

is used in the Ethernet packet router design looks

like. Using an optimized inter-language function

call the SystemC model, MiiMaster makes a call MiiMaster makes a call MiiMaster

to an exported task (HDL task callable from C)

to send it an Ethernet frame header transaction.

When the MiiMaster::SendHeader() method is

called from the spawned stimulus thread, that

call in turn sets the calling scope to the instance

of the HDL model containing the exported task,

then calls the task itself. Notice that the name

of the task, SendPacketHeader() is exactly the

same as the HDL name.

This implementation used the new

SystemVerilog DPI standard [3] which allows

calls to made between the SystemC domain

and the HDL domain. The DPI specifi es a fi xed

mapping of C data types to HDL data types of

the function arguments. While the call is being

made, the SystemC thread is suspended until

the call is returned, at which point, execution of

the thread continues.

This can happen concurrently with other

threads making similar calls on other interfaces

or even other instances of the same interface.

In fact, in the packet router example, there can

be 4 threads actually providing stimulus at any

given time.

In the context of this paper it is assumed that

transactors are written fully in HDL, not in HVL.

This is a key advantage in satisfying both the

ease-of-use and the reusability objectives. Since

transactors deal directly with signal activity, it

is more natural and intuitive for a typical HDL

user to want to model such activity, in an HDL.

Additionally, HDL transactors are fully reusable

by any HVL environment that supports the DPI

function call standard.

MONITOR TRANSACTORS

Monitor transactors can be implemented

using imported HDL-to-C calls. Figure 6 shows

an example of a simple monitor transactor. A

thread in a SystemC module (SC_MODULE)

called MyMonitor might be waiting for some MyMonitor might be waiting for some MyMonitor

data to come back from the HDL side via the

imported HDL-to-C call, MyFunc() before

continuing with its execution. This thread is

denoted by the circular arrow in the diagram.

Each instance of my MyMonitor has a private MyMonitor has a private MyMonitor

semaphore data member that is implemented

as a SystemC sc_event called mySem. This

semaphore is used to synchronize the waiting

thread with the transaction that was received

in MyFunc() when called from the associated

instance of the transactor on the HDL side.

To block on the semaphore, that thread calls

the mySem.wait()method which is denoted by

black line segment bisecting the circular arrow

thread symbol. When this happens, the SystemC

kernel will suspend that thread until the event

occurs, which happens when MyCFunc() is

fi nally called from the HDL transactor and posts

to the semaphore.

On the HDL side, inside the transactor

MyTransactor, an always block makes a call to

the imported C function, MyFunc(). Inside this

function on the C side, a post to a semaphore is

done by calling the mySem.notify() method.

Although the MyCFunc() function is required

to be a standalone C function, it can be declared

as a friend of the MyTransactor module. This MyTransactor module. This MyTransactor

gives it private access data members inside

SC_MODULE(MyTransactor) which include

the semaphore itself. It might also include an

abstract transaction data structure that can

be fi lled out by imported C function when it is

called from HDL. The transaction itself can be

considered to input arguments to the function.

The SystemVerilog DPI provides a mechanism

to associate the call to MyCFunc with a user

context pointer that, in this case, can be the SC_

MODULE pointer to an instance of MyMonitor.

This allows imported HDL callable C functions

to be context sensitive.

Using this relatively simple technique provides

a powerful mechanism for inter-language

process synchronization that can be used in a

variety of ways. For example, one could defi ne a

SystemC “interrupt service” module. Inside this

module could be a thread that does nothing but

blocks for interrupts from the HDL side. Once

they occur, the HDL side can call an imported C

“service routine” service the interrupt, or notify

some other pending thread to do it.

SYSTEMVERILOG DPI
ADAPTATION

The SystemVerilog 3.1 DPI [3] evolved from

several earlier non-standard inter-language

function call interfaces, notably, OpenVera’s

DirectC [2] and SUPERLOG CBlend [7]. The

DirectC interface was donated to Accellera

by Synopsys and evolved into the current

SystemVerilog DPI.

www.mentor.com 29

The SystemVerilog DPI allows the creation of

two types of functions:

• imported functions – defi ned in C,

called from HDL

• exported functions – defi ned in HDL,

called from C

Imported and exported functions provide an

ideal mechanism over which to implemented

untimed, transaction-based synchronizations

and data exchange between models in the HVL

domain and transactors in the HDL domain.

By carefully crafting DPI function call

interfaces between HDL models and C models,

a user allows function arguments to serve as

untimed transactions that fl ow in either the

C-to-HDL direction or the HDL-to-C direction,

between C models and transactors.

HDL-BASED TRANSACTORS

The modeling of transactors in HDL has three

advantages over co-simulation and HVL-based

transactor solutions. First, it is familiar to users

and therefore easy to use. Complex transactors

can be written in a familiar HDL instead of C

or other HVLs that are ill-suited for writing

hardware-oriented models with detailed timing

behavior.

Secondly, function-call interfacing to those

transactors is easily scalable to multiple HVL

environments. Because the SystemVerilog DPI

standard is defi ned to be ANSI C, transaction

interfaces can be created for other HVLs

in addition to SystemC. Examples include

Verisity’s e language and OpenVera--both of

which provide native support for C interfacing.

Other transaction-level modeling solutions

have been restricted to a single, rigid HVL

environment that doesn’t promote the reuse

of transactors. The problem is that those

transactors must be written in that specifi c

HVL. Modeling transactors in HDL and coupling

HVL to them with function calls avoids this

problem.

Thirdly, transaction-accurate coupling

promotes effi ciency in high-performance HDL

simulation platforms, such as emulators or

accelerators. The coupling isn’t confi ned by the

low communication bandwidth of conventional,

signal-oriented API interfaces. Whole

transactions tend to occur far less frequently

than the events on the signals that they

trigger. These aspects dramatically improve

the performance of hardware-accelerated

simulations.

John Stickley is a Principal Engineer at

Mentor Graphics Emulation Division. His

research interests are in system-level modeling

and design verifi cation. His most recent work at

IKOS Systems and Mentor Graphics has been

in the area of high-performance co-modeling

techniques used to bridge high-level, multi-

threaded C/C++ testbenches to designs under

test modeled at the RT level in HDL. He has 18

years of experience in the EDA industry and

holds a BSEE degree from Cornell University.

REFERENCES:

1. SystemC - Version 2.0 User’s Guide

- All contributors - www.systemc.org.

2. OpenVera Language Reference Manual

– Version 2.0 – Synopsys, Inc.

3. SystemVerilog 3.1 Draft 6 – Accellera’s

Extensions to Verilog – Accellera.

4. Usage and Concepts Guide for

Specman Elite - Verisity Ltd.

5. Shotgun E - An Eight Step Approach

to Experience Random Verifi cation - Peet

James, Chris Macionski.(Referenced in full

online version of article.)

6. SystemC Verifi cation Standard

Specifi cation Version 1.0b – Submission to

SystemC Steering Group.

7. Functional Specifi cation for SystemC

2.0 – Version 2.0-Q – All contributors -

www.systemc.org.

8. Transaction Level Modeling: Above

RTL Design and Methodology – Mark

Burton, Adam Donlin.

Figure 3: This fi gure illustrates the

same 4-port Ethernet packet router shown

in Figure 1, but after the DUT has been

migrated to hardware.

This submission is based on an article that

originally appeared in Chip Design magazine,

Aug-Sep’05, pages 21-24, and republished with

permission by Chip Design magazine. www.

chipdesignmag.com

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com30

FOREWORD

On August 3rd of 2005, Accellera

unanimously approved the new OVL library as a

standard, based on the work of the OVL Verilog

and System Verilog (OVL-VSVA) technical

committee.

In my role as chair of the Accellera OVL-VSVA

committee, I had the privilege to work with

industry experts from leading EDA vendors as

well as end-users of OVL to get their know-how

and insight on how we can enable non-expert

users to take advantage of advanced verifi cation

tools, methodologies and techniques.

In this article I will explain what OVL is

and how to use it through a simple example

and explanation of what the various control

parameters are. I will also outline a methodology

on how to begin taking advantage of OVL.

WHAT IS STANDARD OVL?

At the time this article was written, the OVL

library was composed of 32 assertion checkers

that verify specifi c properties of a design, as well

as capture coverage metrics. By using a single,

well-defi ned interface, OVL provides designers,

integrators, and verifi cation engineers an open,

vendor-independent interface for functional

verifi cation using static and dynamic formal

verifi cation and simulation engines. OVL also

documents design intent.

OVL assertion checkers are instances of

modules whose purpose in the design is to

guarantee that some conditions hold true.

Assertion checkers are composed of one or

more properties, a message, a severity, and

coverage.

For example, take a look at OVL ‘assert_

never’. This assertion checks that the ‘test_

expr’ test expression does not evaluate to TRUE

at each rising edge of a clock ‘clk’. In cases

where the test expression contains unknowns,

the checker can fl ag this situation as well.

assert_never #(
 /* severity_level */ `OVL_ERROR,
 /* property_type */ `OVL_ASSERT,
 /* msg */ “Register A < Register B”,
 /* coverage_level */ `OVL_COVER_ALL)
 valid_checker_inst(
 /* clock */ clk,
 /* reset */ reset_n,

 /* test_expr */ regA < regB);

The parameters in this simple ‘assert_never’

example illustrate the control an OVL user has

over the individual assertions. For example, it

is often the case that you want to guard and

verify correct input and output behavior, and

by using the ‘severity_level’, you can report the

importance of the check. You could even stop

the simulation run, if desired, by setting the

‘severity_level’ to `OVL_FATAL.

The ‘property_type’ determines whether to

use the assertion checker as an assert property

or an assume property. Setting the ‘property_

type’ to OVL_ASSUME tells the verifi cation

engines that the OVL checker is a constraint

that should not be checked but assumed.

By default OVL checker fi rings are reported

as a “VIOLATION”, but by using the ‘msg’

parameter you can specify that a more

meaningful message is reported.

An example of a fi ring is illustrated below.

OVL_ERROR : ASSERT_NEVER : Register A <
Register B : : severity 1 : time 900 : DUT.valid_
checker_inst.ovl_error_t

The capture of cover points is built into OVL

checkers. This capability is controlled by the

‘coverage_level’ parameter. In the ‘assert_

one_hot’ checker, for example, one of the cover

points reports if all possible combinations of

one-hot values are evaluated, or as illustrated

below, if the ‘test_expression’ actually

changed. This provides good insight into how

well the test environment exercises the circuit

and whether any coverage holes exist.

OVL_COVER_POINT : ASSERT_ONE_HOT :
test_expr_change covered : time 1300 : DUT.

check_fsm_is_onehot.ovl_cover_t

All OVL assertion checkers call a number

of standard system tasks to check for correct

usage of parameter values, error handling,

reporting, and so forth. They also allow for

customization to facilitate the integration of

OVL into your verifi cation environment.

WHAT IS IN STANDARD OVL?

The OVL library includes a number of

assertion checker classes, as listed in the

text box on the following page. The full list of

checkers can be found in the side bar at the end

of the article.

Adopting Assertion-Based Verification with Accellera Standard Open
Verification Library by Kenneth Larsen, Mentor Graphics Design Verifi cation and Test Division & Dennis Brophy, Mentor Graphics

www.mentor.com 31

GETTING STARTED
WITH STANDARD OVL

The number of available checkers in OVL

may be overwhelming to new users. A few

guidelines will help determine where to add OVL

checkers for both HDL simulation and formal

verifi cation.

• Add checkers where you make an

assumption. For example, where you expect

a signal will be available for at least n-clock

cycles; and when if one event happens

then another will happen. ‘assert_always’,

‘assert_never’, ‘assert_implication’ are

examples of checkers that can be used here.

• Add checkers to fi nite state machines

(FSM) to check for illegal transitions, illegal

states, and that you do not stay in a state

longer than expected. Checkers such as

‘assert_no_transition’ and ‘assert_time’

can be used for this. Use the coverage

information obtained by the checker to

ensure that all states of the FSM have been

covered during simulation.

• Add checkers to check for legal ranges.

For example, ‘assert_range’ for addresses

to memory structures. Also, checking for

underfl ow and overfl ow is very valuable.

You can use ‘assert_underfl ow’ and

‘assert_overfl ow’ for counters that are not

allowed to wrap around.

• For memory structures, FIFOs are

always a good target for adding checkers,

because many bugs tend to creep in to

them. Another use of checkers is to ensure

correct behavior and seek out bugs.

‘assert_fi fo-index’ can be used to ensure

that a FIFO pointer should never underfl ow

or overfl ow

• Add checkers to interfaces to ensure

the correct exchange of information. For

example, if you send a request, you should

receive a grant within a given number of

cycles; and that the ‘I am done’ signal

must assert within a given set of cycles

after the leader signal was raised. ‘assert_

handshake’, ‘assert_unchange’, ‘assert_

win_change’ are examples of checkers that

can be used.

Looking ahead, we see a movement by

the advanced users of assertions and ABV

towards completely “hardening” the design

interface with checkers monitoring for all illegal

behaviors. In this scenario, by defi nition, all

behavior that is not caught by the checkers

must be an acceptable behavior. This will

provide a number of benefi ts, such as removing

corner-case bugs, reducing “contract break”

bugs, and helping verifi cation engineers target

their test efforts. If a fi ring does occur, it means

that you have found a bug in a block that

interacts with your block, that you or your peer

designer have misunderstood the specifi cation

about your interface, or that you have a bug in

your checker. An article on this subject will be

submitted at a later date.

But as always, keep it simple, and don’t

repeat what you just wrote in your RTL.

USING STANDARD OVL

The OVL library has a single interface

and multiple implementations. It is currently

provided in Verilog-95 and SystemVerilog.

Other language implementations, such as PSL

and VHDL, are expected in the near term, but

no matter the underlying implementation, the

simple use-model will continue to be the same.

To use the OVL checkers, you have to specify

which capability to enable, as well as the desired

implementation language to use. These settings

can often be added to a Verilog command fi le

to simplify the compilation process. Here is a

small example of one such fi le.

// ovl.f - OVL Verilog command fi le
+libext+.v+.vlib+.sv
// Enable OVL checkers and coverage capabilities
+defi ne+OVL_ASSERT_ON
+defi ne+OVL_COVER_ON
-y <Accellera_installation_dir>/std_ovl

+incdir+<Accellera_installation_dir>/<std_ovl>

To compile a design with ModelSim using the

Verilog implementation of OVL use

vlog +defi ne+OVL_VERILOG –f ovl.f <design fi les>

To compile a design with Questa using the

SystemVerilog implementation of OVL use

vlog –sv +defi ne+OVL_SVA –f ovl.f <design fi les>

To compile a design to be used with 0-In static

formal verifi cation, either use the same setup

as for ModelSim and Questa or use the ‘–ovl’

and ‘–ovl_cov’ command line options. T

The library will automatically be detected

and loaded.

OVL Assertion checker Class Behavior checked

Combinatorial assertions with combinational logic

Single-cycle assertions In the current cycle

2-cycle assertions for transitions from the current cycle to the next

n-cycle assertions for transitions over a fi xed number of cycles

Event-bounded assertions between two events

A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com32

Assertion Description

assert_always Ensures that the value of a specifi ed expression is TRUE.

assert_always_on_edge Ensures that the value of a specifi ed expression is TRUE when a sampling event undergoes a specifi ed transition.

assert_change Ensures that the value of a specifi ed expression changes within a specifi ed number of cycles after a start event initiates checking.

assert_cycle_sequence Ensures that if a specifi ed necessary condition occurs, it is followed by a specifi ed sequence of events

assert_decrement Ensures that the value of a specifi ed expression changes only by the specifi ed decrement value.

assert_delta Ensures that the value of a specifi ed expression changes only by a value in the specifi ed range.

assert_even_parity Ensures that the value of a specifi ed expression has even parity

assert_fi fo_index Ensures that a FIFO-type structure never overfl ows or underfl ows

assert_frame
Ensures that when a specifi ed start event is TRUE, the a specifi ed expression must not evaluate TRUE before a minimum number

 of clock cycles and must transition to TRUE no later than a maximum number of clock cycles

assert_handshake Ensures that specifi ed request and acknowledge signals follow a specifi ed handshake protocol.

assert_implication Ensures that a specifi ed consequent expression is TRUE if the specifi ed antecedent expression is TRUE.

assert_increment Ensures that the value of a specifi ed expression changes only by the specifi ed increment value.

assert_never Ensures that the value of a specifi ed expression is not TRUE.

assert_never_unknown Ensures that the value of a specifi ed expression contains only 0 and 1 bits when a qualifying expression is TRUE.

assert_next Ensures that the value of a specifi ed expression is TRUE a specifi ed number of cycles after a start event.

assert_no_overfl ow Ensures that the value of a specifi ed expression does not overfl ow.

assert_no_transition Ensures that the value of a specifi ed expression does not transition from a start state tot the specifi ed next state.

assert_no_underfl ow Ensures that the value of a specifi ed expression does not underfl ow.

assert_odd_parity Ensures that the value of a specifi ed expression has odd parity.

assert_one_cold Ensures that the value of a specifi ed expression is one-cold (or equals an inactive state value, if specifi ed)

assert_one_hot Ensures that the value of a specifi ed expression is one-hot.

assert_proposition Ensures that the value of a specifi ed expression is always compositionally TRUE.

assert_quiescent_state
Ensures that the value of a specifi ed state expression equals a corresponding check value if a specifi ed sample event has transitioned

 to TRUE.

assert_range Ensures that the value of a specifi ed expression is in a specifi ed range.

assert_time Ensures that the value of a specifi ed expression remains TRUE for a specifi ed number of cycles after a start state.

assert_transition Ensures that the value of a specifi ed expression transitions properly from a start state to the specifi ed next state.

assert_transition Ensures that the value of a specifi ed expression transitions properly from a start state to the specifi ed next state.

assert_unchange Ensures that the value of a specifi ed expression does not change for a specifi ed number of cycles after a start event initiates checking.

assert_width
Ensures that when value of a specifi ed expression is TRUE, it remains TRUE for a minimum number of clock cycles and transitions from

 TRUE no later than a maximum number of clock cycles.

assert_win_change Ensures that the value of a specifi ed expression changes in a specifi ed window between a start even and an end event.

assert_win_unchange Ensures that the value of a specifi ed expression does not change in a specifi ed window between a start event and an end event.

assert_window Ensures that the value of a specifi ed expression is TRUE in a specifi ed window between a start event and an end event.

assert_zero_one_hot Ensures that the value of a specifi ed expression is zero or one-hot.

www.mentor.com 33

NOTES

www.mentor.com 34

Editor: Tom Fitzpatrick

Program Manager: Rebecca Granquist

Wilsonville Worldwide Headquarters

8005 SW Boeckman Road

Wilsonville, OR 97070-7777

Phone: 503-685-7000

Subscribe: http://www.mentor.com/products/

fv/verifi cation_news.cfm

