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verifi cation

“Each issue will 
include several 
in-depth technical 
articles about the 
latest advances in 
verification technology 
and methodology, as 
well as some timely 
tips for making better 
use of the tools you 
may currently have.”
      —Tom Fitzpatrick

Hello and welcome to the Verifi cation Horizons 

Newsletter!

We at Mentor are pleased to share some 

exciting information on the frontiers of 

functional verifi cation. We hope you will fi nd 

this quarterly newsletter to be an important 

source of information as we continue to explore 

and present solutions in this area. Many of you 

have heard about the release of our QuestaTMhave heard about the release of our QuestaTMhave heard about the release of our Questa

Verifi cation Platform back in May. Questa is an 

evolutionary leap in the life of our successful 

ModelSim HDL simulator. In keeping with 

Questa’s broader, more ambitious capabilities, 

we’ve created this new newsletter to provide 

concepts, values, methodologies and examples 

to assist with the understanding of what these 

advanced functional verifi cation technologies 

can do and how to apply them most effectively.  

We have big plans for this newsletter. Each 

issue will include several in-depth technical 

articles about the latest advances in verifi cation 

technology and methodology, as well as some 

timely tips for making better use of the tools you 

may currently have. 

In this fi rst issue, the feature article presents 

a hands-on view of how to build a reusable 

SystemVerilog testbench. There has been 

much “buzz” recently about the need to apply
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“Welcome”, continued from Page 1

assertions, constrained randomization and 

functional coverage to the functional verifi cation 

problem, a need which Questa fi lls nicely from 

the tool perspective. In this article, we introduce 

some techniques for architecting your testbench 

and show how to apply these capabilities 

from a language and coding perspective, by 

focusing on modularity and transaction-level 

communication interfaces between verifi cation 

components.

The next article, “Improving the Effi ciency 

of Your ABV Methodology,” discusses how to 

achieve an effi cient ABV methodology through 

assertion automation and the targeted use of 

assertions. It also describes how CheckerWare 

assertion macros support automation, 

maintenance, optimization, and suffi cient 

functional coverage. 

The following article provides an overview 

of constrained random stimulus generation 

in Questa using SystemVerilog. It covers the 

topics of random stability for repeatability of 

results — an important factor in being able to 

debug designs — and discusses the Questa 

constraint solver in some detail. It provides a 

basic understanding of the functionality and 

operation of the solver and shows how to write 

constraints that can be solved effi ciently by the 

solver. 

In our Standards & Partners section, we will 

include a discussion of the new SystemVerilog-

based Open Verifi cation Library, which 

Mentor donated to Accellera. In addition to 

the standardization discussion, we will also 

show how to use the OVL to get started with 

Assertion-Based Verifi cation.

In our fi nal article, “Bridging an Untimed High-

Level Verifi cation Language with Timed HDL 

Modeling Environments — The Advantages of 

Transaction-Based Verifi cation,” we expand on 

the theme of transaction-level communication 

in the testbench. This article shows how 

architecting your testbench to use transaction-

level communication provides the fl exibility to 

connect components of different abstraction 

levels, including a transaction-level testbench 

to an RTL design. We discuss the use of the 

SystemVerilog Direct Programming Interface 

(DPI) as a useful inter-language communication 

mechanism. For example, the SystemVerilog 

DPI allows a testbench to be written in SystemC 

and effi ciently coupled to a design in HDL, 

whether the design is executed in a simulator or 

an emulation session.

We hope you enjoy this newsletter, both in its 

inaugural and future issues. We will endeavor to 

use this forum to keep you up to date with all the 

latest additions to the Questa product family, 

as well as other verifi cation products across 

Mentor. Of course, tools by themselves are not 

enough. Because at Mentor we will continue 

to focus on supporting standards in all our 

verifi cation tools, it will always be incumbent on 

us to provide value to you, our customers, above 

and beyond the tools themselves. Rather than 

locking you into a proprietary solution, we will 

strive to provide this additional value in terms of 

training, consulting, documentation, and other 

means. The Verifi cation Horizons Newsletter 

will be one signifi cant part of this overall effort.

Respectfully submitted,

Tom Fitzpatrick

Verifi cation Technologist

Design Verifi cation and Test
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you, our customers, 
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tools themselves.”
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INTRODUCTION

SystemVerilog offers an exciting new 

environment in which to construct testbenches.  

Language features support constrained random 

generation, object-oriented programming, 

assertions, coverage, and more.  Verifi cation 

engineers new to this environment may not 

know where to start or how to use these features.  

This paper presents a complete testbench for 

verifying a rock, scissors, paper arbitration 

module, based on a methodology developed 

at Mentor Graphics and XtremeEDA, aimed at 

building effective verifi cation environments 

with minimal complexity.  Due to the simplicity 

of the device under test (DUT) we can present 

the complete testbench here, as it totals fewer 

than 300 lines of code.

The fi rst section of this paper briefl y describes 

the motivations behind the major verifi cation 

features of SystemVerilog.  The paper then 

proceeds to present a high-level verifi cation 

environment and describe the components that 

comprise it.

MODERN VERIFICATION: 
CONSTRAINED RANDOM 
COVERAGE-DRIVEN 
VERIFICATION

A typical test environment developed in 

Verilog enables directed test cases: each test 

case sets up a scenario in the DUT, runs a 

(hopefully) problematic input and verifi es that 

the DUT responds correctly.  Directed test 

cases are good at fi nding expected bugs, but 

will not fi nd more complex bugs resulting from 

the interaction of different features.  As devices 

get more complex, fi nding these bugs becomes 

critical to success.  SystemVerilog has four 

main verifi cation features to support advanced 

randomized testbenches:

• Object-oriented programming features 

allow the user to represent complex data 

types and to abstract away low level 

operations on these types. Typically, 

SystemVerilog verifi cation proceeds at the 

transaction level, where the fundamental 

objects are entire transactions (bus cycles, 

packets, etc.) rather than signal transitions.

• Constrained randomization selects 

random values for data transactions. 

Constraints are used to ensure that the 

selection of values is both relevant (e.g. 

Ethernet payload size between 46 and 1500 

bytes) and useful.

• Functional coverage tabulates events 

occurring within the DUT and testbench to 

allow the verifi cation engineer to determine 

if important functions inside the DUT have 

been exercised under all relevant scenarios.  

For example, a scheduler block may take 

an exceptional action if all output FIFOs are 

full.  Functional coverage can be used to 

verify that all output FIFOs are indeed full at 

some point in the simulation, preparatory 

to verifying that the scheduler performs 

correctly in this case.

• Temporal assertions verify low-level 

aspects of communication protocols. 

Communication between functional blocks 

in a design typically must follow a well-

defi ned protocol over time.  Such protocols 

include not only standards such as PCI and 

Ethernet, but also the timing details of any 

proprietary internal interfaces.

TYPES OF REUSE

Before examining a methodology for creating 

reusable testbenches, we should first look at 

what we are trying to achieve with “reuse”. We 

can identify at least three types of reuse: reuse 

of verification components, reuse of test cases, 

and reuse of testbenches.  Each type of reuse 

places conditions on the resulting code.

When one thinks of a reusable testbench, 

the first thing that comes to mind is reusable 

verification components, typically associated 

with a signaling protocol such as PCI or SPI4φ2. 

Indeed, reusable verification components 

have spawned a whole industry of verification 

intellectual property (VIP). Verification 

component reuse requires that the domain of 

possible transactions (read, write, etc.) is well 

defined.

In addition to verifi cation components, 

individual test cases can be reused. For example, 

a PCI core is verifi ed using an environment 

consisting of PCI drivers and monitors, as 

well as a suite of test cases.  Although it is 

common to package the drivers and monitors 

for reuse, one can also package the test cases 

to create a complete test suite.  Doing this 

effectively requires that the PCI test engineer 

defi ne and abstract the protocol operations on 

the application side of the PCI bus (e.g. a PCI-

to-Wishbone bridge would refl ect transactions 

on a Wishbone bus).  To use the test suite, 

customers must implement the application-side 

protocol in a manner specifi c to their designs.

Finally, proper architecture of testbenches 

can enhance reuse possibilities, either related to 

a single design, or across multiple designs.  For 

a single design, proper architecture at the block 

level allows the testbench to be used as-is to 

cover the block within the full-chip testbench.  

Across multiple designs, proper architecture 

minimizes re-work to test successive devices.

           continued next page

A Reusable SystemVerilog Testbench in Only 300 Lines of Code by David Jones, Xtreme EDA
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EXAMPLE DUT

This paper will provide the complete 

testbench for a rock-paper-scissors (RPS) 

arbiter.  The rules for RPS itself are described 

at http://www.worldrps.com. The example DUT 

referees a version between two digital logic 

players.  The pin interface for each player is 

shown below.

interface player_if(input clk);
reg             r, s, p;        // Inputs
reg             go;
reg [4:0]     score;  // Range 0-10

    modport player(
        output r, s, p,
        input go, score, clk
    );
    modport arbiter(
        input r, s, p,
        output go, score,
        input clk
    );
    modport monitor(
        input r, s, p,
        input go, score,
        input clk
    );

endinterface

There are three inputs that normally must 

be low. Upon receipt of the go signal (active 

high for one clock), the player must assert 

one of the three lines for one clock. The DUT 

will then determine which wins, and increment 

the appropriate score. Play proceeds until one 

score meets a limit, which is confi gured through 

a confi guration interface:

interface limit_if(input clk);
reg             load; 
reg [4:0]       limit;

    modport confi gure(
        input clk,
        output load, limit
    );
    modport dut(
        input clk, load, limit
    );
endinterface

The timing of the protocol between a player and 

an arbiter is shown in Figure 1.

ELEMENTS OF A REUSABLE 
TEST ENVIRONMENT

The elements of a typical reusable test 

environment are shown in Figure 2.  Drivers, 

monitors, test cases and scoreboards will 

be familiar to seasoned Verilog testbench 

designers.  SystemVerilog allows the verifi cation 

engineer to better model transactions and 

defi ne the lines of communication between 

the components.  To this end, the elements 

of a reusable SystemVerilog testbench also 

include the dynamic data objects, as well as 

standardized communication channels.

DYNAMIC DATA MODEL

Modern verifi cation is done as much as 

possible at the transaction level. A transaction 

is a logical unit of work, such as a burst cycle 

on a bus, or a packet sent over an interface.  

Transaction-level modeling concentrates 

on the interactions of transactions upon the 

DUT without worrying about the pin-level 

representation of the transactions.  Verilog 

testbenches cannot model data transactions 

very well as Verilog’s only real data type is 

the vector of bits.  In contrast, SystemVerilog 

classes can represent complex transactions 

in an organized manner.  Transaction objects 

are passed among testbench components by 

reference, improving performance.

Transactions are best modeled using 

SystemVerilog classes.  A transaction object 

must contain all information required: operation 

type, address, data, etc. Depending on the 

transaction it may also include the time at 

which the transaction was issued.

In addition to defi ning the data, 

SystemVerilog’s object-oriented features allow 

the designer to defi ne a functional interface to 

the objects through a set of public methods 

(tasks and functions).  Manipulation of class 

instances through the methods is preferred over 

direct access to the data items.  The methods 

allow decoupling of the data representation 
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and the behavior of the object, so that new 

fi elds can be added, or the implementation of 

certain behaviors modifi ed without impacting 

the verifi cation components that work with 

the objects.  The following operations are 

representative of what can be done with 

methods:

• Make a copy of an object.

• Compare an object with another.

• Create a string representation of the 

object for use in a text messaging system.

• Pack or unpack the fi elds of an object 

into a stream of bytes.

Finally, class defi nitions allow the specifi cation 

of random fi elds and randomization constraints.  

Constraints permit automatic generation of legal 

transactions where the specifi c components of 

the transaction are randomly generated. Care 

must be taken when applying constraints. 

Although some constraints (such as Ethernet 

frame size) are desired to conform to a protocol 

specifi cation, it is useful to disable these 

constraints to test the DUT behavior outside of 

the specifi cation.  Besides constraints applied 

for correctness, one may also apply constraints 

to bias stimulus generation towards interesting 

cases, e.g. generating high-speed streams 

of small packets to stress a DUT having a 

minimum per-packet overhead.  Often these 

constraints confl ict with one another.  To deal 

with this, either group the constraints into 

separate constraint blocks and use constraint_

mode() to selectively disable them, or create 

subclasses of a base class for each desired 

group of constraints.  Both approaches are 

useful in practice.

As an example, here is the defi nition of 

the transactions for our RPS example.  The 

defi nitions are placed in a package (rps_pkg) 

so that they may be used anywhere in the 

testbench.

package rps_pkg;
    typedef enum { ROCK, SCISSORS, PAPER }   rps_t;

    class rps_c;
        rand rps_t      rps;
        function string toString();
            return rps.name;
        endfunction
    endclass

    class rps_mon_c;
        rps_t        rps;
        bit             ok;
        int             score;

        function string toString();
            reg [63:0]  work;
            string      result;

            $sformat(work, «%0d», score);
            if (ok)
                result = rps.name;
            else
                result = «Invalid»;
            return {«score=»,work,» play=»,result};
        endfunction
    endclass

endpackage

Class rps_c models a single move by one 

player.  Its only component is the choice of play 

(rock, paper or scissors) which we represent by 

an enumerated type.  The rps fi eld is random, 

enabling generation of random plays.

Class rps_mon_c models a transaction 

recovered by a monitor.  In addition to the play, 

it conveys an “ok” status (a player may decline 

to make a move when required) as well as the 

score.

Both of these classes have a toString() 

method that returns a string representation of 

the data values.

STANDARDIZED INTERCONNECTS

Before discussing the static elements of the 

testbench, it is useful to discuss the techniques 

used to connect them together.  Our methodology 

uses SystemVerilog interfaces for both pin-level 

and transaction-level interconnect.

SystemVerilog interfaces encapsulate both 

signal defi nitions and task/function defi nitions 

inside a construct that can be instantiated 

much like a module. We use modports to 

document the various functional aspects inside 

an interface.  Pin-level (physical) interfaces are 

defi ned through the signals contained within 

interfaces, and transaction-level interfaces are 

defi ned using tasks and functions. The pin-

level interfaces to our DUT have already been 

described.

For a verifi cation component to be reusable, 

the functional interfaces through which it 

generates or accepts transactions must be well 

defi ned and standardized.  Mentor Graphics 

has developed SystemVerilog standardized 

interconnects based on the OSCI SystemC TLM 

standard transports.  Each transport is type-

parameterized for the transaction type and 

optionally the response type.

• The TLM FIFO interface supports 

unidirectional blocking and non-blocking 

data transfers. This transport is used where 

the source does not care about completions 

(e.g. transmitting ATM cells).

• The TLM request/response channel 

supports two independent FIFO interfaces, 

one for requests, and one for responses.  

This transport is used where a response 

is required to a request, and requests 

and responses may overlap in time (e.g. 

PCI Express.)  Each FIFO may block 

independently.

• The TLM transport channel supports 

a serialized request-response mechanism.  

A semaphore is used to ensure that only 

one request may be outstanding in the 

channel at any given time.  The transmitting 

component blocks until a response is 

received.



A QUARTERLY PUBLICATION OF MENTOR GRAPHICS

www.mentor.com8

In addition to the above channels inspired by 

SystemC, we have developed an analysis port 

interface.  An analysis port is a non-blocking 

communication channel that can be connected 

to more than one sink.  Each sink component 

is presented with a transaction using a non-

blocking void function call. In contrast to the 

other transports, the analysis port functions 

correctly with zero, one, or more than one sink 

connected.

The above interconnect schemes handle 

transactional communication.  Since 

transactions can be common to multiple devices 

or environments, they are good candidates 

for reuse.  However, testbench-specifi c 

communication (e.g. between a scoreboard 

and a test controller) is often necessary. Ad-

hoc methods, such as signals (good for boolean 

indications), events and hierarchical task calls 

can be used where required.

STATIC COMPONENTS

Referring back to Figure 2, a test environment 

will have the following types of devices.

Stimulus Generator

A stimulus generator creates the transactions 

that are sent into the DUT. A directed stimulus 

generator uses imperative code to create 

individual transactions. A better approach is 

to use a random stimulus generator, which 

randomizes the data properties of a class 

instance. The stimulus generator usually 

connects to a blocking transport, such as a 

TLM FIFO.

Here is the stimulus generator for our RPS 

example:

interface gen(interface.put_if sink);
import rps_pkg::*;

rps_c   item;

    always begin
         item = new;
         assert(item.randomize()) else 
              $error(“Can’t randomize item.”);
         sink.put(item);
    end

endinterface

The code above creates a new rps_c 

transaction object, randomizes it, and sends 

it to the transport, in this case a TLM FIFO.  

The FIFO must have a fi nite size such that this 

generator will eventually block.  A more complex 

generator may support being started/stopped 

from the test case.

Drivers

Drivers convert transactions into lower-layer 

transactions or pin activity.  The typical driver 

accepts transactions from a blocking transport 

such as a FIFO and either creates transactions 

for a lower-level protocol and passes them 

on to another transport, or implements the 

transaction as pin-level activity.  Some drivers, 

such as bus drivers, may also need to obtain 

a response.  These drivers will connect to the 

request/response or transport channels.  Pin-

level drivers for synchronous protocols should 

use non-blocking assignments to avoid race 

conditions.

Here is the example driver:

interface driver(interface.get_if source, 
                         interface.player pins);
import rps_pkg::*;
rps_s           xact;

    always @(posedge pins.clk) begin
        if (pins.go && source.try_get(xact)) begin
            pins.r <= (xact.rps == ROCK);
            pins.s <= (xact.rps == SCISSORS);
            pins.p <= (xact.rps == PAPER);
        end else begin
            pins.r <= 0;
            pins.s <= 0;
            pins.p <= 0;
        end
    end
endinterface

The driver must conform to the device 

protocol.  It cannot set any of the rock/paper/

scissors bits until the arbiter gives us the go 

signal.  At that point, the pins are driven based 

on the transaction. At all other times the player’s 

pins must be low.

This driver uses try_get() so that it won’t 

block.  It is effectively a synchronous circuit in 

itself.  Non-blocking assignments are used to 

avoid race conditions with the DUT.

Monitors

Monitors convert pin-level activity or lower-

layer transactions into higher-layer transactions.  

In our methodology, monitors connect to 

analysis ports, which guarantees that the act of 

issuing a transaction is non-blocking, thereby 

avoiding the monitor missing subsequent 

pin-level activity.  Pin-level monitors also 

incorporate assertions to verify the temporal 

properties of the protocols they are monitoring.  

Typically, the assertions check that the signals 

are well-defi ned (not Z or X), and that each 

transaction conforms to some legal cycle and 

follows all of the conditions imposed upon it.  

Basically, the assertions verify all properties of 

the protocol independent of the data.  Monitors 

are located on the output path from the DUT 
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as expected, but they are also useful on the 

input path, to verify that the drivers are working 

correctly, to provide proper transactions for the 

scoreboard, and to collect coverage.

Our example monitor code for one player 

follows:

interface play_mon(interface.monitor pins, input rst);
import rps_pkg::*;
rps_mon_c       item = new
rps_mon_c       item_c;
reg             last_go, last2_go;

    // Recover plays one clock after go
    always @(posedge pins.clk) begin
        last_go <= pins.go;
        last2_go <= last_go;
    end

    always @(posedge pins.clk) begin
        item.ok = 1’b1;

        if (last_go) begin
            case ({pins.r,pins.p,pins.s})
            3’b001: item.rps = SCISSORS;
            3’b010: item.rps = PAPER;
            3’b100: item.rps = ROCK;
            default: item.ok = 1’b0;
            endcase
        end
        
        if (last2_go) begin
            item.score = pins.score;
            item_c = new(item);
            $display(“%m: %s”, item_c.toString());
            ap.write(item_c);
        end
    end     
        
    analysis_port #(rps_mon_s)  ap();

    // Asertions
    property no_meta;
    @(posedge pins.clk) disable iff (rst)
        $isunknown({pins.go,pins.r,pins.p,pins.s,pins.score})==0;
    endproperty
    assert_no_meta: assert property (no_meta);

    property valid_play;
    @(posedge pins.clk) disable iff (rst)
        pins.go |=> $countones({pins.r,pins.p,pins.s})==1;
    endproperty

    assert_valid_play: assert property (valid_play);

    property in_turn;
    @(posedge pins.clk) disable iff (rst)
        !pins.go |=> {pins.r,pins.p,pins.s}==0;
    endproperty
    assert_in_turn: assert property (in_turn);

endinterface

The fi rst part of the monitor recovers 

transactions from the pin-level activity.  We 

need to sample the player inputs one clock after 

“go” is sampled high, and we need to sample 

the updated scores one clock after that.

On the fi rst clock, we decode the pin activity 

into one of ROCK/PAPER/SCISSORS.  Only legal 

bit patterns are accepted; all others will result in 

an illegal transaction. On the second clock we 

sample the score and send the transaction to 

the analysis port.

The other important part of a monitor is 

the protocol assertions. We use assertions to 

verify that:

• There are no Z/X meta-values in the 

plays or score.

• That exactly one player input is high 

one clock after "go".

• That no player input is high at any 

other time.

Scoreboards

A scoreboard is a component that performs 

complex data checks.  A typical scoreboard 

may include the following components:

• A database of transactions received to 

date.  The format of this database depends 

on the requirements.  For example, a router 

scoreboard may require that each port 

maintain an ordered queue of expected 

packets.

• A behavioral model of the DUT.  This 

model must implement any required data 

manipulation functions of the DUT.  This 

model is usually simpler than the DUT since it 

operates at the transactional level rather than 

the pin level, and need not be synthesizable.

• A collection of data checks.  Each 

data check runs when the database has 

received suffi cient data to do so.  Where 

possible, the data checks should be written 

to verify the behavior of the DUT without 

using a behavioral model, as it is likely that 

a behavioral model will contain the same 

conceptual errors (although not necessarily 

implementation errors) as the DUT.  For 

example, a Reed-Solomon encoder should 

be verifi ed by attempting to decode with a 

behavioral decoder.  If the input has not been 

corrupted by error injection, then the decoder 

should be able to confi rm zero errors.  

However, use of checks alone is not always 

possible; for example, an image processing 

circuit is often verifi ed against a behavioral 

model simply because image aesthetics are 

too diffi cult to capture in a data check set.

Our example scoreboard connects to the two 

monitors, one for each player. A transaction is 

expected at each monitor at the same time.  The 

“database” consists of the expected scores for 

each player.  Due to the simplicity of the DUT, 

the verifi cation is performed using a behavioral 

model.  The function wins_over() determines 

who wins given a pair of rps_t items obtained 

from two transaction objects.  We collect 

two transactions, update the scores and 

compare against the scores obtained from the 

transactions.  The scoreboard also has logic 

to determine when the game is over, at which 

point the test is done.
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interface scoreboard(interface.ap_get_if ap1,
                                  interface.ap_get_if ap2, 
                                  input int limit, 
                                  output reg pass, done);
import rps_pkg::*;
int     score1 = 0;
int     score2 = 0;
        
    analysis_fi fo #(rps_mon_s)  fi fo1(ap1);
    analysis_fi fo #(rps_mon_s)  fi fo2(ap2);

    initial begin
        pass = 1;
        done = 0;
    end 
    
rps_mon_s       ev1, ev2;
rps_t                rps1, rps2;

    function bit wins_over(rps_t p1, rps_t p2);
        return (p1 == ROCK && p2 == SCISSORS) ||
            (p1 == SCISSORS && p2 == PAPER) ||
            (p1 == PAPER && p2 == ROCK);
    endfunction
    always begin
        fi fo1.get(ev1);
        fi fo2.get(ev2);
        rps1 = ev1.rps;
        rps2 = ev2.rps;
        score1 += wins_over(rps1, rps2);
        score2 += wins_over(rps2, rps1);
        cg.sample();

        assert(score1 == ev1.score) else begin
            $error(«Player 1 score incorrect, expected %0d got %0d»,
                score1, ev1.score);
            pass = 0;
        end

        assert(score2 == ev2.score) else begin
            $error(«Player 2 score incorrect, expected %0d got %0d»,
                score2, ev2.score);
            pass = 0;
        end

        assert(score1 <= limit && score2 <= limit) else begin
            $error(«Score is over limit.»);
            pass = 0;
        end
        if (score1 == limit || score2 == limit) done = 1;
        $display;
    end
   endinterface

Coverage

Coverage is the component that brings 

“closure” to the testbench.  Coverage is required 

to ensure that all interesting cases have been 

tested.  This is required in a constrained-random 

environment because one cannot guarantee 

that any given random testcase will test all 

interesting aspects of DUT operation.  Instead, 

a few testcases often end up testing most of 

the DUT, and specially constrained testcases 

will be required to test the remaining corner 

conditions. Candidates for coverage include 

input and output transactions, state machines 

inside the DUT, corner cases for FIFOs, etc.  

Cross coverage (coverage of all combinations 

of two otherwise independent events) is useful 

for verifying that functional blocks operate in all 

modes. Any suspected problem areas within 

the DUT can also be covered.

The one coverage item that comes to mind in 

our example is all possibilities of rock/scissors/

paper from both players.  This is an example of 

a cross-coverage item since the coverage data 

is the Cartesian cross-product of more than 

one data source.  We have chosen to integrate 

coverage into the scoreboard since the data 

comes from the same transactions upon which 

the scoreboard operates.

    covergroup rps_cover;
        coverpoint      rps1;
        coverpoint      rps2;
        cross           rps1, rps2;
    endgroup

rps_cover       cg = new;

The covergroup declaration defi nes what we 

are to cover.  It is then necessary to actually 

instantiate the covergroup which is done 

immediately below.  This covergroup is set 

up with an explicit sampling event, which is 

executed once the scoreboard has obtained the 

two transactions to cover.

Test Case

The testcase is where any test-specifi c 

confi guration is performed.  A testcase must 

confi gure the DUT as well as any random 

stimulus generators. The testcase should also 

manage the test termination conditions.

interface test case(input rst, interface.confi gure cfg,
                             output int limit, input pass, done);

    initial begin
        cfg.load = 0;
        limit = 20;
        @(posedge cfg.clk);
        while (rst) @(posedge cfg.clk);
        @(posedge cfg.clk);
        cfg.limit <= 20;
        cfg.load <= 1;
        @(posedge cfg.clk);
        cfg.load <= 0;
        @(posedge done);
        $display(“%s”, pass ? “Test PASSED” : “Test FAILED”);
    end

endinterface

After bringing the DUT out of reset, our 

example testcase performs DUT confi guration: 

it fi xes the score limit at 20.  It could also 

potentially randomize this item.  The testcase 

then waits until the scoreboard claims the test 

is over, after which it displays the verdict.

There will be a different testcase fi le for each 

test scenario.  It is often the job of the simulation 

compile/run script to select a test case to run. 

Alternatively, all testcases may be compiled 

into a single environment, such that the test to 

run can be selected at run time.  Techniques for 

doing this are beyond the scope of this paper.

Top Level

The top-level fi le instantiates the DUT and 

all other components.  This does not differ in 

construction from a typical Verilog top-level 

fi le, except for possibly the instantiation and 

use of interfaces.  The “gen_fi fo” is a standard 

component from our TLM library.
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module top;
import rps_pkg::*;

    clkgen #(
        .PERIOD(10),
        .RESET_POLARITY(1’b1)
    )           clks();
       

wire    clk = clks.clk;
wire    rst = clks.reset;
int     limit;
bit     pass, done;
        
    player_if   p1(clk), p2(clk);
    limit_if    lif(clk);
    
    rps_dut     dut(
        .clk, .rst,
        .p1, .p2, .lif
    );
    gen_fi fo    #(
        .T(rps_c),
        .BOUND(2)
    )           gen2drv1(), gen2drv2();

    gen         gen1(gen2drv1);
    gen         gen2(gen2drv2);

    driver      drv1(
        .source(gen2drv1),
        .pins(p1)
    );
    driver      drv2(
        .source(gen2drv2),
        .pins(p2)
    );
    play_mon    mon1(
        .pins(p1),
        .rst
    );
    play_mon    mon2(
        .pins(p2),
        .rst
    );
    scoreboard  score(
        .ap1(mon1.ap),
        .ap2(mon2.ap),
        .limit,
        .pass,
        .done
    );

    test case    tc(
        .rst,
        .limit,
        .cfg(lif),
        .pass,
        .done
    );

endmodule

CONCLUSIONS

This paper has presented a basic 

SystemVerilog testbench using constrained- 

random, coverage-driven, assertion-based 

techniques.  We used a SystemVerilog version 

of the SystemC TLM library to manage the 

interconnect. Although this example looks 

complex, the test environment itself weighs 

in at only 300 lines of code, and illustrates the 

basic concepts and roles of each component.  

The reader can use this testbench as a template 

for more complex designs.

REFERENCES
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ABSTRACT

In the quest to avoid respins and risk 

while striving for better verifi cation with 

fewer resources, many companies are 

moving to assertion-based verifi cation (ABV) 

methodologies. This article introduces the 

benefi ts of ABV, as well as how to achieve 

a highly effi cient ABV methodology while 

understanding avoidable pitfalls. With a focus 

on automation, optimization, debugging, and 

coverage, readers will begin to understand 

these are essential avenues to achieving higher 

quality designs faster, through assertions. 

INTRODUCTION

Missed market windows and respins. 

Responsibility for either of these situations 

strikes fear in even the most stoic of engineering 

managers. And yet, many companies are still 

struggling with how to avoid these situations. 

A variety of issues can delay or destroy 

projects. But with functional verifi cation taking 

more cycles and dollars, and functional bugs 

remaining the number one cause of respins, 

insuffi cient verifi cation is one of the largest 

culprits. Furthermore, it is increasingly diffi cult 

to understand just how much verifi cation is 

enough. The upshot is that many companies 

do not perform adequate verifi cation on their 

designs.

Efforts to rectify this situation with faster 

simulation runtimes does not cut it. In response, 

EDA companies are competing to develop the 

most effective advanced functional verifi cation 

methodologies, including constrained-random 

data generation, coverage-driven verifi cation 

(CDV), testbench automation (TBA), formal 

verifi cation, and assertion-based verifi cation 

(ABV). Leading-edge companies that have 

employed ABV have already realized many 

benefi ts, which can be summarized as higher 

quality verifi cation with fewer resources in a 

shorter amount of time. 

However, as with any new methodology, there 

is a learning curve and other upfront costs. In the 

case of ABV, design and verifi cation engineers 

must learn how to write and use assertions. 

Engineering managers must also understand 

how to leverage assertions with other advanced 

verifi cation technologies and the most effective 

ways to adopt them. Furthermore, assertions 

require additional simulation cycles. This 

problem is exacerbated by the fact that in order 

for ABV to provide meaningful results, today’s 

incredibly complex, multimillion gate designs 

require tens, even hundreds of thousands of 

assertions. Writing all of these assertions by 

hand takes too much time and is not an effective 

use of engineering resources. 

Any particular ABV approach should and 

will be judged by how well and how quickly it 

delivers a highly effective design verifi cation 

methodology. The standardization of design 

and verifi cation languages is critical to this 

effort. Standards enable tool and technology 

interoperability and allow ABV to be adopted 

incrementally. However, they are not enough. 

Technologies and strategies that boost ABV 

productivity are needed. The fi rst of these in-

volves the automation of the ABV methodology. 

This includes the complementary use of 

assertion libraries and assertion languages. 

Libraries that increase the automation of 

the assertions themselves, as well as ABV 

itself, are integral to immediate and effective 

adoption of assertions. The second strategy 

consists of empirically evolved techniques that 

immediately improve verifi cation productivity 

and effectiveness through the incremental 

adoption and targeted application of ABV.

Improving the Efficiency of Your ABV Methodology
by Neil Hand, Mentor Graphics Design Verifi cation and Test Division
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ASSERTIONS IN BRIEF

In order to understand assertions, it is fi rst 

important to look at problems with traditional 

verifi cation approaches. As designs grow in 

complexity, observability and controllability 

become a problem. Verifi cation needs to be 

able to control the circuit to known values, 

propagate test stimulus through the design, 

and then observe the design’s response to the 

stimulus. Traditional simulation approaches 

treat the device under test (DUT) as a black 

box, providing stimulus and observing results 

without a clear view of what is actually 

happening inside the design. The larger and 

more complex the design, the slower this 

process becomes as more simulation cycles 

are needed. Additionally, debugging functional 

failures becomes prohibitively diffi cult due to 

limited observability from the design.

Assertions, on the other hand, provide a 

much clearer view into the design. Assertions 

specify the intent of the design, and provide 

direct controllability and observability to/from 

the source of the problem. In the most basic 

sense, assertions are like actionable comments. 

In other words, while a designer is creating the 

design, he can add comments about how the 

design is supposed to work. Taking this one 

step further, by adding assertions, he can 

specify how the design is intended to work and 

actually verify its behavior during simulation. 

Assertions confi rm three distinct conditions. 

First, they can specify proper operation of 

the interface. In other words, assertions can 

verify how a block communicates with other 

blocks within the design. Second, assertions 

can verify corner-case assumptions. For 

example, assertions can check for unusual 

circumstances that may not easily be 

discovered during simulation. Third, assertions 

can be used as coverage points, providing data 

on how thoroughly various components have 

been exercised during verifi cation. 

Assertion-based verifi cation is the use 

of assertions in simulation and/or formal 

verifi cation. ABV compares the implementation 

of a design against its assertions to verify that a 

design functions as the designer intended.

GENERAL ABV METHODOLOGY 
AND THE DESIGN CYCLE

In an ABV methodology that is targeting 

general verifi cation improvements, the design 

and verifi cation teams must be committed 

to using a test plan that utilizes ABV. They 

understand the value of assertions and add them 

into the register-transfer level (RTL) code as they 

develop it — the earlier the better. Design intent 

and assumptions are captured early during the 

design phase. Much of this is automated. For 

some complex blocks, static formal verifi cation 

is used to confi rm the assertions before the 

code check-in for regression. In addition, 

the verifi cation team adds protocol monitors 

to the standard interfaces and sets up the 

regression environment to run with assertions. 

The verifi cation team may also add assertions 

to capture events that are hard to test from a 

pins-out perspective and that need to be tested 

based on the test plan. The team aggregates the 

statistical and coverage information to uncover 

holes in the regression environment. Finally, 

the verifi cation team runs dynamic formal 

verifi cation on multiple complex blocks at the 

sub-chip or cluster level.

Throughout the fl ow, engineers should 

employ as much automation as possible to 

ensure the highest achievable verifi cation 

quality with the most effi cient use of resources 

(both man hours and simulation cycles). 

Additionally, standards should always be used 

to avoid getting locked into a single vendor fl ow 

and to ensure that assertions can be reused.

MOVING TOWARD EFFICIENT ABV 

Standard Assertion Languages: 

A Starting Point

Assertions can be written in any hardware 

description language (HDL) or assertion 

language. The Property Specifi cation Language 

(PSL) and SystemVerilog are two standard 

assertion languages developed and approved 

by Accellera. Specially constructed for 

writing assertions, these languages are more 

effi cient than HDLs for this purpose. They are 

also standardized to support interoperability. 

Assertions written in SystemVerilog and PSL 

can be parameterized, so it is often the case 

that a small group of assertion experts can 

write a custom assertion library for use on a 

specifi c project. Assertions written in PSL or 

SystemVerilog can reside in the HDL code within 

the design or be kept as an associated fi le used 

during the verifi cation process. Figure 1 gives 

an example of PSL assertions that check input 

handshake protocols.

In a typical process, designers generate 

assertions during the design phase. Verifi cation 

engineers then run assertions during verifi cation 

in simulation and/or formal verifi cation.
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Assertion Libraries: 

A Step Toward Assertion Automation

While there is a need to generate some 

assertions manually for custom circuitry 

and the like, most assertions can actually be 

generated from assertion libraries. Libraries 

have certain advantages, particularly for new 

users, in that they are easy to instantiate in the 

design, requiring little effort on the designer’s 

part to specify the desired behaviors. However, 

those behaviors must be contained in the library. 

Libraries are also high quality, since they are 

created by experts and have been proven over 

time by various teams on many projects. 

Assertion libraries, such as Accellera’s 

standard assertion library, Open Verifi cation 

Library (OVL), contain common assertions in a 

reusable format. Many of the OVL components 

were donated by Mentor Graphics®. These 

libraries provide pre-written, pre-verifi ed 

assertions for common components, specifi ed 

in either PSL or SVA languages. 

To get started using standard OVL libraries, 

visit the Accellera website and download the 

free source code here: http://www.accellera.

o r g / a c t i v i t i e s / O V L _V S VA / O V L _V S VA . 

Assertion Macros and Protocol Monitors: 

Advanced Automation

The open, standards-based library from 

Accellera is a good way to start automating 

ABV. However, OVL currently offers only 32 

components, more is needed to signifi cantly 

reduce the number of assertions engineers 

will have to write. Experience has shown that 

a 10 million-gate design requires over 100,000 

assertions to achieve a level of assertion 

density to fully verify the design. 

Fortunately, through a proprietary technology 

known as Assertion Synthesis, CheckerWare®

assertion macros from 0-In provide a much higher 

degree of automated assertion specifi cation and 

maintenance. The Assertion Synthesis solution 

greatly simplifi es the 

specifi cation of assertions 

by automatically extracting 

design data, such as 

clocks, resets, and variable 

names, from RTL code.

Because they are based on the standard 

verifi cation languages, CheckerWare assertion 

macros satisfy the need for standardization. 

They complement and are totally interoperable 

with all standard assertion languages, including 

PSL, SystemVerilog, and OVL. CheckerWare 

assertion macros automatically generate from 

2 to 4000 assertions and coverage points per 

macro. This means that they cover about 90 

percent of the logic you need to verify in your 

design, vastly reducing the amount of time and 

effort required to implement ABV. 

Assertion macros take the idea of a library 

one step further. While a library provides pre-

defi ned assertions for common components, 

assertion macros are high-level compiler 

directives for the automatic generation of 

assertions based on supplied arguments and 

information automatically extracted from 

the design. In other words, assertion macros 

automatically generate assertions for common 

components and hook them up in the design. 

Another productivity issue is maintaining 

assertions. Assertions can suffer from 

something referred to as “assertion rot.” For 

example, if assertions are written early in the 

design phase, and the design goes through 

numerous iterations, many of the assertions 

may no longer apply. In these cases, assertions 

basically become dead code that clutter the 

design and waste valuable simulation cycles. 

Assertion Synthesis includes a unique design-

inferencing capability that allows assertions 

to automatically adapt to design changes, 

signifi cantly reducing assertion maintenance 

as the design evolves. 
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The CheckerWare library also includes 

several specialized protocol monitors. A 

protocol monitor is a pre-packaged, pre-verifi ed 

set of thorough tests for a standard interface 

component. During simulation or formal 

verifi cation, protocol monitors identify the 

source of any incorrect protocol transactions.

For example, 0-In’s protocol monitor for the 

PCI Express serial interconnect component 

provides a total of 4000 assertions for 

functional checking, coverage, and formal 

constraints. For designs using PCI Express 

components, this provides a fully automated 

solution that quickly validates the interpretation 

and implementation of the interface component 

within the design. In addition to extensive 

checking, these monitors also provide detailed 

coverage data through numerous protocol 

statistics that are tracked during verifi cation. 

Assertion Optimization: 

Reducing Simulation Time

Effi cient ABV methodologies include the 

means to optimize assertions. Assertions 

are used in part to reduce verifi cation effort. 

However, without proper care, assertions have 

an adverse affect on simulation time. To keep 

simulation runtimes down, assertions must be 

optimized. 

CheckerWare creates assertions that are 

synthesizable HDL, which are optimized for 

performance in all simulators and for all assertion 

types. As a result, a typical design with 100,000 

assertions adds a mere 20 percent simulation 

overhead, as opposed to the 5X slowdown 

expected from other approaches. CheckerWare 

further optimizes ABV by eliminating provable 

assertions as well as redundant assertions so 

that precious simulation cycles are not wasted 

on assertions that do not need to be verifi ed. 

Coverage Metrics: 

Knowing When Verifi cation is “Done”

A key goal of verifi cation is doing enough of 

it to ensure the design functions correctly. But 

knowing when is “enough” is simply guesswork 

unless verifi cation coverage is tracked. Metrics 

and coverage are critical. The CheckerWare 

library includes specifi c functional coverage 

metrics related to the behaviors being checked. 

Functional coverage measures verifi cation 

thoroughness. In coverage-driven verifi cation

functional coverage metrics are used to 

automatically record and analyze information 

to ascertain whether (and how effectively) 

a particular test verifi ed a given feature. That 

information is fed back into the process to target 

additional verifi cation efforts more effectively. 

Coverage driven verifi cation requires the 

specifi cation of coverage points, or specifi c 

design behaviors, which must be exercised. 

Besides checking for violations of design 

intent, assertions are a primary method of 

specifying these coverage points. While this 

capability is available with manual creation 

and standard libraries, it is more automated 

and more comprehensive with CheckerWare. 

This is partly due to the fact that CheckerWare 

provides extensive capabilities to track and 

manage verifi cation coverage provided by 

assertions. The CheckerWare integrated 

assertion manager reports on assertion density, 

structural coverage for RTL components, and 

transaction coverage for standard interfaces. 

Assertion Density: 

Knowing When You Have Enough

Similar to the coverage questions, the 

question often asked when using assertions 

is “how do I know I have enough assertions?” 

Assertion density strives to answer this 

question. Assertion density metrics determine 

the effectiveness of the ABV methodology 

by ensuring two things: 1) assertions exist 

for all critical behaviors that must be verifi ed, 

and 2) all parts of the design are adequately 
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covered by one or more assertions. Assertion 

density points out blind spots in the design due 

to inadequate assertion coverage, and it gives 

a heuristic measure of functional complexity 

versus assertion complexity.

Assertion density can be measured in several 

ways. First, it can be measured in terms of 

the number of active HDL constructs—the 

complexity of the code—relative to the number 

of assertions. To avoid skewing this measure, the 

complexity of the assertion is also a factor. For 

example, a redundant or provable assertion would 

be considered trivial. Based on the experience 

of many companies who have adopted ABV, a 

good rule of thumb is 100 lines of HDL (or 25 

statements) per assertion. Another measure of 

assertion density is minimum sequential distance 

(MSD), which measures the number of clock 

cycles required for register values to propagate 

to assertions. The fewer the clock cycles, the 

easier it is for simulation or formal verifi cation to 

evaluate the assertion. By default, CheckerWare 

considers unobserved logic of greater than 20 

clock cycles to be uncovered.

AN EFFICIENT ABV METHODOLOGY 

ABV addresses two high-level design 

challenges. First, as a general verifi cation 

methodology, ABV adds a new level of 

verifi cation thoroughness. Second, ABV can be 

used specifi cally to target functional bugs that 

are either missed altogether, or are very diffi cult 

to fi nd with traditional verifi cation techniques. 

The most effi cient use of ABV employs both 

approaches, which are described in the following 

sections. 

ABV AND VERIFICATION 
HOT SPOTS

Every complex design has a number of 

verifi cation hot spots. Verifi cation hot spots are 

those structures within or aspects of the design 

Successful Use of ABV

National Semiconductor

National is a large semiconductor fi rm that designed a variety of devices. One group 
within National designed I/O companion chips for that company’s processor line. This chip 
contained a million gates of logic with an internal bus bridge that connected a new high-
bandwidth streaming internal bus to a traditional legacy bus. The protocol between these 
buses was complex. 

The group’s challenge was to fi nd bugs early enough in the design process to ensure no 
schedule impact from bug fi xes. They opted to make extensive use of CheckerWare macros 
and protocol monitors, running them in both block-level and chip-level simulations. They 
also used 0-In dynamic formal verifi cation to expand upon simulation in search of deep, 
corner-case bugs. 

The result was National found many errors – from simple FIFO de-queuing issues to 
more complex memory transaction issues. This verifi cation process yielded a chip with 
no problems at fi rst silicon. The manager of the group was confi dent that this verifi cation 
approach found bugs that had a high probability of making it into silicon.   

AMD

A certain group within AMD develops complex chipsets for high-performance 
microprocessors. These chips contained control and data structures with many deep corner 
cases. The project managers were looking to improve their development process by adding 
assertions and formal verifi cation. They started with just two chips. One was an I/O hub and 
the other was a network controller that bridged from a PCI interface to a wireless Ethernet. 

With the I/O hub chip, the company targeted their efforts on CDC verifi cation. They 
used the automated 0-In CDC tool and easily found problematic areas, including a case of 
reconvergence whereby two independently synchronized signals were combined into the 
same logic. 

In the network controller chip, the company used 200 macros and various monitors from 
CheckerWare. The resulting assertions enabled engineers to increase the observability of 
their designs, determine structural coverage metrics, and identify bugs at the source. 

The design/verifi cation manager summed up the results nicely by saying, “We increased 
our tape-out confi dence and helped improve our time-to-market, which translated directly 
to project cost savings.”

Sun

Sun is a computer networking company that develops numerous ASIC and microprocessor 
designs. They were one of the fi rst leading-edge companies to adopt an assertion-based 
verifi cation methodology. Over the years Sun has expanded its ABV methodology to 
include CheckerWare macros, protocol monitors, 0-In CDC verifi cation, and static formal 
verifi cation. As a result, Sun has seen signifi cantly faster times-to-market. 

More information on these stories can be found at: 
http://www.mentor.com/products/fv/success/index.cfm.
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that are prone to problems and diffi cult to 

verify. The 80/20 rule dictates that 80 percent 

of verifi cation time is spent on small portion 

of the design (20 percent), which is diffi cult to 

verify. The verifi cation diffi culty comes from 

things such as deeply buried, diffi cult to control 

logic sequential logic, interactions with state 

machines or other external agents, and so on. 

A verifi cation hot spot cannot be completely 

verifi ed by simulation alone, due to the amount 

and diffi culty of the simulation. Assertions used 

with formal verifi cation techniques are vital to 

effective hot spot verifi cation.

These hard-to-verify structures, or corner 

cases, are called verifi cation hot spots. Using 

their knowledge of the design, designers 

introduce assertions that capture the design

intent and update their regression environment 

to support ABV, which specifi cally targets 

these hot spots. Designers perform simulation 

regressions with these assertions on a 

regular basis. Then, based on the structure 

of the design, they use static or dynamic 

formal verifi cation to confi rm the assertions 

exhaustively. Throughout this process they use 

as much automation as is available. 

Through our experience working with 

customers, we’ve found that the best way 

to begin using ABV is by focusing on these 

verifi cation hot spots. In this way, customers can 

immediately realize the benefi ts while adopting 

it in an incremental fashion by applying scarce 

verifi cation resources to areas that need them 

most. Bus arbiters and clock-domain crossings 

are just two examples of hot spots that 0-In has 

identifi ed.

A bus arbiter is an example of a common 

design structure that needs special verifi cation 

focus. Arbiters allow multiple devices to 

share buses and are also found in a number 

of other complex RTL components, such 

as DMA controllers, schedulers, and traffi c 

fi lters. CheckerWare supports the automated 

implementation of both static and dynamic 

formal verifi cation within an ABV methodology. 

It includes formal constraints that make the 

use of formal verifi cation both practical and 

effective for these hotspots. Other formal 

solutions require much more effort.

Clock-domain crossings (CDC) are another 

aspect of today’s designs that are highly prone 

to error. Most designs have more than one 

clock, some have up to 10. Whenever a signal 

crosses between domains, special care must 

be taken to avoid CDC problems. Mentor’s 

0-In CDC verifi cation solution can be built on 

top of ABV. In combination with static design 

checking, assertions can run in simulation 

and formal verifi cation, so that the solution: 

1) identifi es CDC signals, 2) checks for the 

presence of synchronization logic, 3) verifi es 

the correct operation of CDC protocols, and 

4) measures whether all phase relationships 

have been verifi ed. By encapsulating all this 

verifi cation focused on one hot spot into a 

succinct and automated package, designers 

do not need to become CDC experts. All the 

expertise is captured in a solution driven 

primarily by assertions. 

CONCLUSION

Companies adopt assertions to improve 

verifi cation quality, detecting bugs locally and 

more quickly than with traditional simulation 

approaches. However, not all ABV strategies are 

equally effective. Automation plays a key role in 

determining the productivity and quality gains 

that can be expected from an ABV solution. 

Key aspects of an effi cient ABV methodology 

include: 1) using pre-defi ned, pre-verifi ed 

assertion macros and monitors for the majority 

of the work, and standard languages for custom 

assertions when needed; 2) reducing simulation 

time through assertion optimization; 3) reducing 

design time through automated assertion 

maintenance; and 4) supporting coverage 

driven verifi cation efforts to understand when 

enough verifi cation has been done. Likewise, 

assertions can be used to generally improve 

verifi cation thoroughness, or they can be used 

to specifi cally target verifi cation hot spots. A 

combination of both is recommended.

By adopting an effi cient assertion-based 

verifi cation methodology — one that heavily 

utilizes automation — companies can quickly 

and easily improve their verifi cation quality, 

while avoiding the addition of time, cost, and 

risk to the design cycle.
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INTRODUCTION

In the current verifi cation environment 

engineers write directed tests to verify the 

functionality of their design. Once functionality 

has been verifi ed they add more tests to the 

suite. Quite often this process is time consuming 

and many corner cases are missed. 

Rather than require the verifi cation engineer 

to write tests to check each feature individually, 

constrained-random verifi cation (CRV) 

effectively allows a single test to check multiple 

features. With this methodology, each “test” 

can check many  possible scenarios, and the 

simulator itself chooses a specifi c scenario for 

each invocation. This can be an extraordinarily 

powerful verifi cation methodology, but it is one 

that is not supported well by either  standard 

Verilog or VHDL. 

SystemVerilog has been designed specifi cally 

to support this methodology. This article will 

provide some of the basics for users to start 

coding effi ciently with SystemVerilog. 

OVERVIEW OF CRV METH-
ODOLOGY DIRECTED TESTING 

Directed testing is a term used when the 

engineer creates the stimulus for every single 

clock cycle or transaction that might span 

multiple clock cycles. Each cycle or group 

of cycles is directed at verifying a particular 

feature selected by the engineer. 

Because of the straightforward nature of 

directed tests, they are fairly easy to write. 

Unfortunately, by defi nition, they only address 

the explicit scenarios predicted by the verifi cation 

engineer. As designs get more complex, it 

becomes harder to write directed tests to cover 

all of the possible scenarios and corner cases, 

both because the expected response becomes 

harder to predict and because the corner cases 

become harder to hit, if they can be predicted at 

all. Such tests can be improved somewhat by 

adding randomization, such as writing random 

values to a memory in addition to, or instead 

of, a walking-ones pattern. These tests are 

still inherently directed . The system functions 

$random or $dist_uniform in Verilog provide a 

simple way of fi lling bits with random numbers. 

They can also be used to randomize delays or 

repetition counts. 

CONSTRAINED RANDOM TESTING

The idea of feeding totally random stimuli 

into a design seems ineffi cient, and it would 

be if there were no constraints on the random 

numbers the generators are allowed to 

produce. The idea behind CRV is that both the 

data and the transactions generated by the test 

are chosen at random from a set of valid, or 

constrained, possibilities. 

DIRECTING TESTS FROM 
CONSTRAINED RANDOM 

In a constrained random environment, a 

directed test is achieved by tightly constraining 

the choices so that a single scenario is exercised. 

Thus, a “sanity test” in this environment can be 

achieved by constraining the test to generate a 

single write to a specifi ed address followed by 

a single read from the same address. Once this 

sanity test is validated, proving that the read/

write interface works properly, removing the 

constraints allows a full broad-spectrum test 

to occur in which all of the registers are read/

written in random order, with random data, and 

in all different modes. When a problem occurs, 

it is easy to add new constraints to the test in 

order to focus on the particulars that caused the 

problem so it can be debugged. 

Directed tests are very useful in many 

circumstances where it may be easier to write 

a directed test to guarantee that the design 

reaches a certain state quickly, rather than 

rely on random behavior to achieve the desired 

results. 

PROCESSOR GENERATED 
CONSTRAINED RANDOM 
BUS TRAFFIC 

One powerful method for generating stimulus 

is to program the designs embedded processor 

to perform this task. Questa offers cycle-

accurate models for most ARM embedded 

cores which support generation of constrained 

random AMBA bus cycles. The user specifi es 

constraints for the address space, data range, 

bus cycle types and number of cycles. The 

cycle-accurate model then randomly generates 

AMBA bus cycles that fall within these 

boundaries.

Most AMBA bus slaves are so structured that 

the value of blasting them with random cycles 

is probably low, but this feature is useful for 

generating bus traffi c from the processor while 

other AMBA masters arbitrate for the bus and 

perform their data transfers. Loading up the 

AMBA bus with processor driven cycles is more 

likely to expose any arbitration or bus bandwidth 

problems than having an AMBA master make 

transfers on a bus that’s dead silent.

Constrained Random Stimulus Generation in Questa Using SystemVerilog
by Raghu Ardeishar, Mentor Graphics Design Verifi cation and Test Division
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Users can ease into CR testing methodology 

incrementally using inline constraints. Consider 

the following example in standard verilog. 

Line 4 creates random values for “data” but 

there is not much control over what you get. In 

Verilog 2001 $random provides a mechanism 

for generating random numbers. The function 

returns a new 32-bit random number each time 

it is called.  

1. initial begin
2. for(i=0;i<32;i++) begin
3.       addr = i;
4.       data = $random();
5.       if(addr < 16)
6.       data[7] = 1’b1;
7.       do_write(addr,data);
8. end
9. for(i=0;i<32;i++) begin
10.       addr = i;
11.       do_read(addr,data);
12.       assert(data == exp[i]);
13. end

14. end

Using randomize..with we can enhance 

the quality of the data we get as follows. You 

can randomize the “addr” and “data” with the 

constraint that “addr” is always less than 32 and 

then create a list of those addresses (line 3 and 

5). In SystemVerilog the randomize function is 

provided which is similar to the $random seen 

before but with the added benefi t that you can 

guide the random number generation using 

constraints.

You can then limit your randomization to only 

those addresses in the list previously created 

while doing a write (line 9 and 10) thus making 

sure that you do not read from an address 

which has not been written to.

1. initial begin
2. for (int i = 0; i < 32; i++) begin
3.      randomize( addr, data ) with { addr < 32;} 
4.      if (addr<16) data[7] == 1’b1; });
5.      addr_list[addr] = addr;
6.      do_write(addr,data);
7. end
8. for (int i = 0; i < 32; i++) begin
9.      randomize( addr ) with { addr inside {addr_list}; };
10.    do_read(addr,data);
11.     assert(data == exp[addr]);
12. end

13. end

RANDOMIZATION WITH OBJECT 
ORIENTED PROGRAMMING 

In SystemVerilog, random variables, random 

number generators, and constraints are 

integrated into the object oriented class system. 

Here are just a few important concepts. 

OBJECT ORIENTED 
PROGRAMMING BASICS 

In its simplest form, a class is like a structure, 

an encapsulation of data. In SystemVerilog, 

classes are dynamically created, whereas 

structures are created when they are declared. 

Please reference fi gure 1 below.

Classes are dynamic objects in SystemVerilog. 

The class objects have to constructed using 

the new() operator. Unlike structs classes can 

contain member functions and constraints. 

The member functions act on class data and 

constraints are used for randomizing the data. 

Struct data can be randomized too but you don 

not have the control because you cannot embed 

constraints to control randomization.

SystemVerilog uses the rand modifi er to 

distinguish the random variables from the 

non-random variables.  In line 2 and 3 in 

class TBase if the variables “a” and “b” did 

not have the rand keyword they would not 

be randomized. A constraint is added as a 

named list of expressions, declared using the 

constraint keyword. 

The real power of object oriented pro-

gramming is achieved through the use of 

inheritance. A new class may be defi ned as a 

derivative of a previously-defi ned base class, 

from which it inherits everything defi ned in the 

base class. 

For example if we have a base class:

1. class TBase;
2.     rand logic [3:0] a;
3.     rand logic [3:0] b;
4.     constraint c1 { a < 4’b1100; }
5.     constraint c2 { b < 4’b1101; }

6. endclass

class Packet_c; 
bit [7:0] address; // property 
bit [31:0] data; 
endclass : Packet_c 

typedef struct { 
     bit [7:0] address; // member 
     bit [31:0] data; 
  } Packet_s; 

Packet_c P; // declares a handle to a Packet 
P = new(); // Constructs an instance of 
a Packet . P is a  reference to a Packet 
P.data = 1234; // Assign class members

  

Packet_s P; //declares an instance of P 
P.data = 1234; // Assign struct members

Figure 1.
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This class can be extended by the following 

class:

1. class TDerived extends TBase;
2.      constraint c3 { a > b ; }
3.      constraint c4 { a < b ; }
4.      constraint c5 {  a + b == 4’b1111; }
5. endclass

Now when we instantiate the derived class 

it has all the constraints c1 thru c5. It is true 

that some of them are contradictory but using 

another feature in SystemVerilog we can turn 

the constraints on and off selectively while 

randomizing the data.

Guideline: Using Inheritance you can add 

and override constraints as your verifi cation 

environment grows. This allows for modular 

testing and reuse.

 This is  in contrast to adding all your 

constraints to your base class in which case 

your base class may have to be rewritten for 

many tests.

DYNAMICALLY MODIFYING 
CONSTRAINTS

As defi ned above if we wanted to randomize 

an object of type Tderived we would get an error 

because of confl icting constraints. We can 

solve the problem using constraint_mode() as 

follows:

1. TDerived derived = new;
2.  derived.c3.constraint_mode(0);
3. status = derived.randomize();
4. derived.c3.constraint_mode(1);
5. derived.c4.constraint_mode(0);

6. status = derived.randomize();

In line 1 the object is instantiated. In line 2 the 

constraint c3 is turned off. So only c1, c2, c4

and c5 are valid when line 3 executes. Similarly 

line 4 and 5 turns on constraint c3 and turns 

off c4 before further randomizing. Thus we can 

explore several possibilities using a single class 

and constraint_mode().

We saw above that constraints can be 

turned off and on using constraint_mode(). 

The same can be done with variables using 

rand_mode().

CONSTRAINT SOLVING

Random numbers are generated with at least 

one constraint, the size (or number of bits) to 

be randomized. The size determines the total 

number of possible values that the random 

variable may have; i.e., the size of the solution 

space. A constraint is basically a Boolean 

expression that is required to be true for the 

values the solver picks. A constraint typically 

reduces the size of the solution space. 

A constraint expression can be a mixture of 

random and non-random variables. Non-random 

variables make the constraint state-dependent, 

meaning that one can dynamically modify 

the constraints during the test, based on the 

values of other variables. If a random variable 

has no constraints, or appears in constraints 

with no other random variables, it is called a 

scalar random variable. Its solution space can 

be separated and solved independently of other 

random variables. 

The most important concept in CRV is to 

understand how the solution space is managed 

based on a set of given constraints. Consider 

the following.

If we have we have 2 variables X and X and X Y both Y both Y

3 bits wide:

rand bit [2:0] X,Y;
constraint less_than { X < Y;}

The solutions are (28 possible):

if Y = 7      X = 6 or 5 or 4 or 3 or 2 or 1 or 0
if Y = 6      X = 5 or 4 or 3 or 2 or 1 or 0
if Y = 5      X = 4 or 3 or 2 or 1 or 0
if Y = 4      X = 3 or 2 or 1 or 0
if Y = 3      X = 2 or 1 or 0
if Y = 2      X = 1 or 0
if Y = 1      X = 0

The points to remember about the constraint

{X < Y} are:

• X and Y are solved by the solver 

at the same time

• constraints are bi-directional i.e, X 

determines Y and Y determines X in a 

constraint operator. This is in contrast to 

conventional programming where X will 

determine Y.

• Conventional thinking implies the chance 

of getting Y = 7 is the same as getting Y = 

1,  But

• Probability of getting (X,Y) = (6,7) 

or (5,7) etc is the same as (0,1).

From the table above there are 

28 possible solutions. Out of the 

28 possible solutions there is only 1 

solution in which Y is 1 hence   

- Probability of Y=1 => 1/28
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Similarly in the solution set there are 

(from the 1st line of the table) 7 possible               

solutions for Y = 7 where X ranges from 

6 to 0 hence:

- Probability of Y=7 => 7/28 

If you wanted an even probability of X and Y 

without disturbing the solution space then you 

would add the following constraint along with 

the previous one:

constraint sol_Yb4X {solve Y before X;}

• Now the solutions remain the same 

as before i.e, 28 possible solutions.

• But you are telling the solver to fi rst pick Y 

and then pick an X from the solution space 

which satisfi es the constraint. 

• That creates an even probability of 

Y from 1 thru 7.

There is another route you can take by  

randomizing X and Y separately and later 

constraining X < Y. But that 

• Changes the solution space as X and 

Y are no longer related

• for example solver could pick Y = 0

Causing FAILURE

• But it is a potentially faster solution as the 

number of  interacting variables decrease.

Let’s look at a few operators in SystemVerilog 

which are used in writing constraints.

//Implication operator ->
      rand bit s;
      rand bit [2:0] d;
      constraint cons { s -> d == 0;}

The above  constraint “cons” (line 3) reads 

if “s” is true then “d” is 0 as if “s” determines 

“d”.But like the constraint we looked at before, 

the constraint implication operator, ->, is  

bi-directional. The values of  “s” and “d” are 

determined together. 

The important point to remember is that 

“s” does NOT determine “d”. In a conventional 

“if” statement “if s then d”  the value of s

determines the value of d. But in this case s and 

d are chosen  together and the solution picked 

randomly from the solution space. 

The 9 possible values in the solution space 

are :

if s = 0  d = 7 or 6 or 5 or 4 or 3 or 2 or 1 or 0
if s = 1 d = 0

The (s,d) pairs will be (0,0), (0,1), 

(0,2),(0,3),(0,4),(0,5), (0,6),(0,7) and (1,0)

The probability of picking s = 1 will be  1 

in 9  —> Not what you thought. If this were a 

conventional “if” statement then you would get 

s=0 with the same probability as s=1.

However if you wanted to  keep the pick “s” 

true with a probability of 50% but not change 

the solution space then you can advise the 

solver by adding  the following constraint to the 

above constraint

• constraint cons_plus {solve s before d;}

This additional constraint does NOT alter the 

solution space. Now the probability of picking 

“s” 1 is 50% and “s” 0 is 50%.

In the example below, there is an implied 

constraint in the enum variable on line 7 that 

the op must be one of READ, WRITE, or NOP.

 1. typedef bit [7:0] addr_t; 
 2. typedef enum {READ,WRITE,NOP} kind; 
 3. 
 4. class Packet_c; 
 5. rand addr_t address; 
 6. rand bit [31:0] data; 
 7. rand kind op; 
 8. constraint data_range { 
 9.                      (op == READ) -> data inside
                          {[1:100]}; 
10.                      op == WRITE) -> data inside
                           {[101:255]}; 
11.                      (op == NOP) -> data inside
                           {0}; 
12.                       } 
13. endclass : Packet_c 

If op equals READ, there are 100 possible 

values for data that satisfy the fi rst implication. 

If op equals WRITE, there are 155 possible 

values for data that satisfy the second 

implication. However, if op equals NOP, there 

is only one possible value of data that satisfi es 

the third implication. That makes a total of 256 

possible solutions. Since only 1 out of 256 

possible values for data would satisfy the third 

implication, op has only a 0.004 chance of 

having the value NOP. 

Similar to the previous example , the 

randomization process involves calculating 

a solution space, then randomly picking a 

single solution. The solution is then written 

to the random variables as a set. Normally 

the solver picks each solution with a uniform 

chance. We can also use “solve before” like the 

previous example to advice the solver. When 

modifying the previous example to solve for 

op before data, READ, WRITE, and NOP will 

have a uniform chance of being chosen before 

choosing a value for data. 

             cont. om page 22
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1. class Packet_c; 
2. rand addr_t address; 
3. rand bit [31:0] data; 
4. rand kind op; 
5. constraint data_range { 
6.                       (op == READ) -> data inside 
                           {[1:100]}; 
7.                       (op == WRITE) -> data inside 
                           {[101:300]}; 
8.                       (op == NOP) -> data inside 
                           {0}; 
9.                       } 
10. constraint order {solve op before data;} 
11. endclass : Packet_c 

Instead of the solve-before constraint, a 

distribution constraint adds weighting factors 

for choosing values, in addition to advising 

which random variables should have values 

chosen fi rst. It does this without modifying the 

solution space, except when a weight is zero. In 

the example below, the distribution constraint 

on line 10 defi nes that op has a 2 in 5 chance 

(40%) of choosing READ, a 40% chance of 

choosing WRITE, and a 1 in 5 chance (20%) of 

choosing NOP. 

1. class Packet_c; 
 2. rand addr_t address; 
 3. rand bit [31:0] data;
 4. rand kind op; 
 5. constraint data_range { 
 6.                       (op == READ) -> data inside
                           {[1:100]}; 
 7..                       (op == WRITE) -> data inside 
                           {[101:300]}; 
 8..                       (op == NOP) -> data inside 
                           {0}; 
 9..                       } 
10.   constraint op_dist { op dist {READ := 2, 
                                       WRITE := 2 NOP := };} 
11.   endclass : Packet_c

Guideline: Use a distribution constraint on 

only one random variable in a set of interrelated 

random variables. 

It is very diffi cult to calculate the probability 

of choosing a value for a random variable when 

there is what appear to be multiple, confl icting 

distribution constraints. 

Distribution constraints are used after 

creating the solution space and are not 

guaranteed to be satisfi ed. 

FUNCTIONS IN CONSTRAINTS
Constraint Expressions which are 

complicated can be simplifi ed using functions 

in constraints. For example, if you wanted to 

compute the number of “ones” in a packed 

array of bits you could do the following:

 1. rand bit[3:0] s;
 2. rand bit [3:0] d;
 3. constraint c1 { if((((s>>3)&1) +
                                 ((s>>2)&1) + 
                                 ((s>>1)&1) + 

                                 ((s>>0)&1)) > 2) d == 0;}

Or you could write a function as shown below:

 1. function automatic int count_ones ( bit [3:0] w );
 2. for( count_ones = 0; w != 0; w = w >> 1 )
 3.       count_ones += w & 1’b1;
 4. endfunction

 5. class foo;
 6.      rand bit[3:0] s;
 7.      rand bit [3:0] d;
 8.      constraint c2 { if(count_ones(s) > 2) d == 0;}
 9. endclass

A few very important concepts need to be 

emphasized:

Constraints c2(line8) and c1 (line3) look 

similar but act differently though seemingly 

achieving the same goal.

In the fi rst example the constraint c1 is inlined 

and the random variables “s” and “d” are solved 

together. There is NO ordering implied. 

However in the second example the function 

call forces a variable ordering. The argument of 

the function ie, “s” has to be solved before “d” 

and independent of it (unlike the “solve before” 

operator). The function call DOES disturb the 

solution space by dividing it.

EFFICIENCY IN WRITING 
CONSTRAINTS

Guideline: Keep the total number  of  related 

random variables down to the absolute 

minimum. 

The amount of time needed to solve a 

constraint increases as the total number of 

interrelated bits of random variables that must 

be solved for one solution space increases. Try 

to break up the interdependencies of random 

variable constraints by randomizing in stages. 

For example, if you want to generate a sorted 

list of 100 random variables, you could create 

an iterative constraint along the likes of Ai< 

Ai+1. 

1.  rand bit [9:0] arr[100];
2.  constraint c { foreach(arr[i]) (i < 99) ->
                                        (arr[i] < arr[i+1]) ; }

However, this would create a single random 

variable of 1000 bits, most likely unsolvable in 

any reasonable amount of CPU time. A better 

solution is to generate 100 independent 10 bit 

random numbers, then sort them procedurally 

afterwards. 

Guideline: Try not to use multiplication and 

division using random numbers in constraints.
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If you were to think of the solution space, 

think of its construction like that of a synthesis 

tool. Like in a synthesis tool, multiplication and 

divisions using variables, which are declared as 

rand are very expensive.

1.    rand bit [11:0] a, b;
2.    constraint c1 {a * b < 40;}

Guideline: Try not to call randomize thousands 

of times on classes. If you have to, try replacing 

the class with a struct. Classes have  function 

calls associated with them such pre-randomize, 

post-randomize, new() etc which makes them 

inherently slower than an equivalent struct.

Consider the following:

1. class dot;
2.      rand bit [15:0] A;
3.      rand bit [15:0] B;
4.      rand bit [15:0] C;
5.      constraint cA { C == B + A ;}
6. endclass
7.
8. class men_line;
9.       rand color colorb;
10.     rand dot a_of_dots[];
11. endclass: men_line 
12.
13. class frame;
14.     rand men_line a_of_lines[];
15.     function new(int height,int width) ;
16.     a_of_lines = new[height];
17.     for(int i = 0; i < height; i++)
18.     begin
19.         a_of_lines[i] = new;
20.         a_of_lines[i].a_of_dots = new[width];
21.         for(int j = 0; j < width; j++)
22.             a_of_lines[i].a_of_dots[j] = new;
23.     end
24.   endfunction
25.

26.  endclass : frame

We are creating a 2-Dimensional Dynamic 

array which is going to be randomized. The base 

class is dot which has 3 elements each 16 bits 

wide and a constraint. That is instantiated in a 

class men_line as variable a_of_dots which is 

a dynamic array. That is further instantiated in 

dynamic array a_of_lines in class frame.

When we instantiate an object of class frame

the constructor is passed arguments to make 

the 2 dynamic arrays. 

16 a_of_lines = new[height]

e.g,

   a_of_lines = new[3]

Creates an array a_of_lines with 3 elements 

but since the element is of type men_line which 

is a class the entry is only a class handle with a 

“null” value. hence the statement:

19 a_of_lines[i] = new;

for each element of the array.

Similarly we construct the array a_of_dots :

20 a_of_lines[i].a_of_dots = new[width];

Creates the entire a_of_dots array. But since 

each element of  a_of_dots is a class of type 

dot  the entry is a null class handle and the 

following extra step is needed for each element 

of the array.

22 a_of_lines[i].a_of_dots[j] = new;

Now the array elements are no longer null 

we can randomize the data using the randomize 

command.

      frame   = fr;
      fr          = new(3,3);    
  result  = fr.randomize(); 

If the fr array is small this operation is fr array is small this operation is fr

relatively quick. However if fr is large then you fr is large then you fr

might consider a much quicker approach (if 

you can give up the constraints in class dot) by 

replacing class dot by :

1.  typedef struct packed {
 2.  bit [15:0] A;
3.  bit [15:0] B;
4. bit [15:0] C;
5.  } dot;

Since dot is no longer a class the new()

function can be simplifi ed as:

 1. function new(int height,int width) ;
 2. a_of_lines = new[height];
 3. for(int i = 0; i < height; i++)
 4. begin
 5. a_of_lines[i] = new;
 6. a_of_lines[i].a_of_dots = new[width];
 7. end
 8. endfunction

             cont. om page 24             cont. om page 24             cont. om page 2
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DEBUGGING OF CONSTRAINTS

Questa offers command line switches to aid 

the debugging effort during randomization.

Guideline: Always check the return value 

from randomize. 

If the constraints placed on the random 

variables in a class have no solution, randomize() 

will return zero. It is critical to check the return 

value so that any problems can be reported to 

the user. An immediate assertion can be useful 

for reporting these problems. 

assert (P.randomize()) else $error(“No solutions 

for P.randomize”); 

Simulator Command-line Switches

-solvefaildebug

When randomize fails, run vsim with the 

solvefaildebug switch and questa will display 

the minimum set of constraints that caused the 

randomize() call to fail. For example:

  1. class TFoo;
  2.    rand bit [5:0] a, b, c;
  3.    constraint c1 { a < b; }
  4.    constraint c2 { b < c; }
  5.    constraint c3 { a < 23; }
  6.    constraint c4 { b > 12; }
  7.    constraint c5 { c == 20; }
  8.  endclass
  9.  class TBar extends TFoo;
10.     constraint c0 { a == c; }
11.   endclass
12.  TBar f = new;
13.  int status;
14.  $display(“status = f.randomize();”);
15.  assert(f.randomize());

Questa outputs the following diagnostic error 

message:

# foo.sv(15): randomize() failed due to 
confl icts between the following constraints:
#  foo.sv(4): ((f.a)<(f.b))
#  foo.sv(5): ((f.b)<(f.c))
#  foo.sv(12): ((f.a)==(f.c))

-solveverbose 2

Gives an idea of the solution space, what 

random variables are being solved, the size of 

the variables and the order of the variables.

CONCLUSION

The constrained random verifi cation 

methodology offers signifi cant advantages over 

the directed approach. Extra effort in building the 

infrastructure up front yields huge yields going 

forwards. This combined with an assertion 

based testing paradigm is one of the best 

ways of testing big complex systems. Questa 

today supports the  SystemVerilog testbench 

features and assertion based methodology 

and offers a powerful single kernel verifi cation 

environment.
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It has become increasingly important to 

carry over models and testbenches from one 

level of abstraction to another for the design and 

verifi cation of system designs. This capability 

enables reuse with a scalable methodology, 

allowing engineering teams to leverage the 

particular strengths of different modeling 

domains. For example, behavioral testbenches 

or system-reference models that are developed 

in a high-level verifi cation language (HVL) 

[1,2,4] can be reused to verify the design-

under-test (DUT) hardware models described 

in a hardware description language (HDL). But 

an intermediate modeling level is required to 

bridge these two levels of abstraction. 

This article focuses on a solution that applies 

inter-language function calls (ILFCs) in order 

to couple untimed models written in an HVL 

with timed models written specifi cally in an 

HDL. This approach combines the testbench-

modeling strengths of HVL with the DUT-

modeling strengths of HDL. HVL environments, 

such as SystemC, are ideal for transaction-

oriented manipulations among untimed, 

communicating threads. HDLs like Verilog and 

VHDL are more suited for the timed, signal-

oriented manipulations that are used to model 

concurrent hardware at the cycle-accurate, 

register transfer level (RTL) of abstraction or 

below. 

ILFCs have been standardized in 

SystemVerilog 3.1. They are referred to therein 

as the Direct Programming Interface (DPI) [3]. 

The SystemVerilog DPI allows the creation of 

two types of functions:

• Imported functions – defi ned in C, 

called from HDL

• Exported functions – defi ned in HDL, 

called from C

Imported and exported functions provide 

an ideal mechanism over which to implement 

untimed, transaction-based synchronizations 

and data exchanges between models in the 

HVL domain and transactors in the HDL 

domain. By carefully crafting DPI function-call 

interfaces between HDL and C models, function 

arguments can serve as untimed transactions. 

Such transactions fl ow in either the C-to-HDL 

or HDL-to-C directions between C models and 

transactors. A variation of the SystemVerilog 

DPI also was adapted for use with the Verilog 

2001 HDL. This implementation was used to 

prototype the Ethernet-packet-router design 

described in this article.

Recently, the Transaction Level Modeling 

Working Group of the Open SystemC Initiative 

(OSCI-TLMWG) formalized a description of this 

mixed-abstraction model [8]. It then developed 

an application-programming-interface (API) 

bridge between the two levels of abstraction. 

The TLMWG defi ned a three-level modeling 

paradigm. The top level is defi ned as the 

programmer’s view (PV). It denotes an untimed 

level of abstraction for algorithmic, software-

oriented modeling. The bottom level is defi ned 

as the cycle-callable (CC) level. It denotes the 

timed, RT level of abstraction and below. In 

between these two levels is the programmer’s 

view + timing (PV+T) level. Models written at 

this level create an abstraction bridge between 

the PV and CC levels. After all, the PV+T models 

interface with CC models through timing shells 

and with PV models at the transaction level. 

Such bridging layers are often referred to as 

transactors.

Although the TLMWG has developed an API 

bridge between the two modeling domains, our 

focus will be on an HDL-transactor, API-less 

approach. Traditional API-based approaches, 

such as co-simulation and HVL-based 

transactors, have fallen short because they are 

cumbersome, ineffi cient, diffi cult to use, and/or 

don’t promote reuse.  Conversely, the TLMWG 

paradigm provides a useful framework and 

terminology for discussing the methodology 

put forward in this article.

AN HDL-BASED METHODOLOGY

HVLs offer several benefi ts:  algorithms are 

easily and quickly prototyped, and architectural 

exploration is feasible. In addition, system-

reference models, which can be used for on-the-

fl y comparisons to hardware models simulated 

at lower levels of abstraction, are relatively easy 

to develop. SystemC [1,6,7] is a good example 

of an HVL modeling environment. Although it 

was chosen for the examples in this article, 

the techniques described herein are general 

enough to be applied to a class of concurrent, 

high-performance, software-centric, non-HDL, 

untimed testbench-modeling environments. 

All of these HVL environments provide a 

means of writing concurrent models, which the 

TLMWG refers to as communicating processes 

[8]. This capability allows large collections of 

inter-communicating models to be simulated 

simultaneously. SystemC has the advantage of 

being fundamentally C++.   Besides providing 

concurrency, it comes with good support for a 

large number of resource libraries that can be 

benefi cial to high-level testbenches. SystemC 

Bridging an Untimed High-Level Verification Language with Timed HDL 
Modeling Environments—The Advantages of Transaction-Based Verification
By John Stickley, Mentor Emulation Division
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also provides easy access to system resources 

like networks, graphical user interfaces (GUIs), 

and bit-mapped displays.

Using a relatively small set of SystemC 

constructs, such as static and dynamic threads, 

inter-process communication mechanisms and 

directed random testing support can create 

powerful testbenches. These testbenches are 

modeled using the untimed level of abstraction. 

Higher complexity in testbench modeling can be 

confi ned to higher abstraction languages. In the 

early phases of a project, one also can model 

the entire DUT or parts of it at this level. The 

engineer thereby creates a reference model that 

can later be used to verify against the hardware 

prototype.

Gradually, the DUT can be migrated to 

hardware modeled in HDL at the timed level of 

abstraction. It can be coupled to the original 

testbench using a simple transaction-oriented 

function-call interface. That interface will create 

transactors that provide an abstraction bridge 

between the HVL and HDL models. 

Using this technique is easier and more 

fl exible than other HVL-to-HDL interfacing 

techniques because it is API-less. The interface 

is fully described in terms of simple-to-use, 

user-defi ned functions rather than diffi cult-

to-use, signal-level APIs like PLI and VPI. 

By supporting this inter-language function-

calling mechanism, the whole requirement for 

a complex, fi xed-API is sidestepped. Abstract 

transactions that originate in the testbench 

become simple function-call arguments passed 

to and from the HDL transactor code. That code 

is capable of transforming them to timed RTL 

function protocols, which are suitable for direct 

interaction with the DUT. 

The best way to couple abstraction levels 

is to force a purely transaction-oriented 

interface directly from the untimed HVL into 

the HDL domain. In other words, use HDL-

based transactors which are fully written in 

HDL—not HVL. This key advantage satisfi es 

both ease-of-use and reusability objectives. 

Transactors deal directly with signal activity, 

so it’s more natural and intuitive for a typical 

HDL user to want to model such activity in an 

HDL. Additionally, HDL transactors easily scale 

to any HVL environment that supports the DPI 

function-call standard and can be fully reused 

by such an environment.

Untimed concurrent interactions can be 

elegantly modeled in a testbench using high-

level constructs. Examples of such constructs 

include those offered by SystemC, such as 

threads, mutexes, semaphores, barriers, 

queues, and directed random data generation. 

When these models need to interface to the 

DUT via an abstraction bridge, they can do 

so by passing whole transactions to an HDL 

resident transactor. That transactor can then 

perform the necessary timed interactions with 

the DUT.

Figure 1 shows an example of a system that 

was initially prototyped in an HVL, such as 

SystemC. During the architectural-exploration 

phase, the design, testbench, and DUT are 

modeled entirely in HVL at the untimed level 

of abstraction. The design can be viewed as 

a hierarchical collection of modules (SystemC 

SC_MODULES, to be specifi c). Those modules 

are interconnected via abstract transaction 

channels (modeled using SystemC classes 

sc_buffer<>, sc_in<>, and sc_out<>). 

The transaction channels are represented as 

straight black arrows. Generally, each arrow 

depicts the fl ow direction of the transaction. 

Contained among the modules are a number 

of static and dynamic threads that interact with 

each other. Those threads are represented in 

Figure 1 as C-shaped black arrows. The main 

driver thread fi rst confi gures the router core 

for proper operation using a special interface, 

which is called the Pbus interface. The testbench 
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then enters its main loop. There, it generates a 

random number of packets. Each packet has 

a randomly selected source port, destination 

port, payload length, and payload content. For 

each packet generated, the testbench driver 

dynamically spawns stimulus and monitor 

threads on the selected input and output ports, 

respectively.

The stimulus threads drive the packets via 

the MiiMaster module into the InPort interface 

modules in the DUT. Generated packets also 

are sent to an expected output queue. Monitor 

threads in the MiiSlave module monitor the 

outgoing packets coming from the OutPort 

interface modules of the DUT. The threads 

then compare what they receive with what is 

expected in the output queues.

Each MiiMaster interface is treated as a 

shared resource. Access to this resource is 

arbitrated using a mutex lock that utilizes the 

SystemC sc_mutex class. If multiple threads 

are spawned that send packets on a given 

interface, only one can be active at a time. 

Pending threads will only apply their stimuli 

when they acquire the requested 

lock. In Figure 1, this stacking of 

pending threads is depicted with 

multiple, C-shaped black arrows 

on one of the MiiMaster ports.

The spawned threads remain 

pending until their packets have 

been successfully sent and 

received for comparison on the 

output side of the DUT. After this 

step, the stimulus and monitor 

threads die. They are replaced 

by other pending threads.

The testbench provides a 

fl exible testing harness for the 

system, which is modeled at a 

high level of abstraction. All data 

is exchanged among modules in 

the form of transactions moving 

over data channels. Early in the architectural-

exploration phase of the design cycle, the DUT 

also is modeled at the untimed transaction 

level. A number of architectural trade-offs can 

be quickly prototyped in this confi guration.

At some point, the DUT in Figure 1 must be 

implemented in hardware. Often times, it will 

be implemented in HDL at the cycle-accurate, 

RTL of abstraction. When this implementation 

happens, the untimed testbench environment 

should ideally be preserved without alteration. 

The same testbench can then be reused to test 

the hardware implementation of the design.

At this point, the testbench and DUT will be of 

differing abstractions. An abstraction bridge is 

therefore required at the boundary between the 

DUT and the testbench. Figure 2 shows how one 

might go about bridging abstraction between 

the untimed MiiMaster stimulus module and the 

now-timed RTL InPort interface module.

The process of bridging abstraction can be 

summarized as follows:

• “Pry apart” the modules that 

communicate across the boundary.

• Progressively transform some or all of 

the DUT from untimed HVL models to timed 

RTL HDL cycle-callable models.

• Insert an abstraction bridge or 

transactor that has compatible interfaces 

to both the untimed testbench and the now-

timed DUT.

Figure 3 (below) shows the 4-port Ethernet-

packet-router system after the DUT has been 
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migrated to hardware. The DUT, which is 

represented in yellow, is modeled in HDL at the 

timed, cycle-accurate, RT level of abstraction. 

The transactor modules, which are shown in 

green, also are modeled in HDL at the RT level 

of abstraction. The blue shaded area represents 

the original, unaltered testbench that was 

modeled in untimed HVL.

In effect, two disjointed hierarchies make 

up the simulated system. The untimed 

testbench remains in its own HVL hierarchy. 

Independently, the RTL DUT and transactors 

are combined in their HDL hierarchy. The two 

hierarchies are loosely coupled by transaction-

based abstraction bridges (i.e., transactors).

STIMULUS SOURCE

Figure 5 shows a depiction of what the inside 

of the MiiMaster stimulus source transactor that MiiMaster stimulus source transactor that MiiMaster

is used in the Ethernet packet router design looks 

like. Using an optimized inter-language function 

call the SystemC model, MiiMaster makes a call MiiMaster makes a call MiiMaster

to an exported task (HDL task callable from C) 

to send it an Ethernet frame header transaction. 

When the MiiMaster::SendHeader() method is 

called from the spawned stimulus thread, that 

call in turn sets the calling scope to the instance 

of the HDL model containing the exported task, 

then calls the task itself. Notice that the name 

of the task, SendPacketHeader() is exactly the 

same as the HDL name.

This implementation used the new 

SystemVerilog DPI standard [3] which allows 

calls to made between the SystemC domain 

and the HDL domain. The DPI specifi es a fi xed 

mapping of C data types to HDL data types of 

the function arguments. While the call is being 

made, the SystemC thread is suspended until 

the call is returned, at which point, execution of 

the thread continues.

This can happen concurrently with other 

threads making similar calls on other interfaces 

or even other instances of the same interface. 

In fact, in the packet router example, there can 

be 4 threads actually providing stimulus at any 

given time.

In the context of this paper it is assumed that 

transactors are written fully in HDL, not in HVL. 

This is a key advantage in satisfying both the 

ease-of-use and the reusability objectives. Since 

transactors deal directly with signal activity, it 

is more natural and intuitive for a typical HDL 

user to want to model such activity, in an HDL. 

Additionally, HDL transactors are fully reusable 

by any HVL environment that supports the DPI 

function call standard.

MONITOR TRANSACTORS

Monitor transactors can be implemented 

using imported HDL-to-C calls. Figure 6 shows 

an example of a simple monitor transactor. A 

thread in a SystemC module (SC_MODULE) 

called MyMonitor might be waiting for some MyMonitor might be waiting for some MyMonitor

data to come back from the HDL side via the 

imported HDL-to-C call, MyFunc() before 

continuing with its execution. This thread is 

denoted by the circular arrow in the diagram.

Each instance of my MyMonitor has a private MyMonitor has a private MyMonitor

semaphore data member that is implemented 

as a SystemC sc_event called mySem. This 

semaphore is used to synchronize the waiting 

thread with the transaction that was received 

in MyFunc() when called from the associated 

instance of the transactor on the HDL side.

To block on the semaphore, that thread calls 

the mySem.wait()method which is denoted by 

black line segment bisecting the circular arrow 

thread symbol. When this happens, the SystemC 

kernel will suspend that thread until the event 

occurs, which happens when MyCFunc() is 

fi nally called from the HDL transactor and posts 

to the semaphore.

On the HDL side, inside the transactor 

MyTransactor, an always block makes a call to 

the imported C function, MyFunc(). Inside this 

function on the C side, a post to a semaphore is 

done by calling the mySem.notify() method. 

Although the MyCFunc() function is required 

to be a standalone C function, it can be declared 

as a friend of the MyTransactor module. This MyTransactor module. This MyTransactor

gives it private access data members inside 

SC_MODULE( MyTransactor ) which include 

the semaphore itself. It might also include an 

abstract transaction data structure that can 

be fi lled out by imported C function when it is 

called from HDL. The transaction itself can be 

considered to input arguments to the function. 

The SystemVerilog DPI provides a mechanism 

to associate the call to MyCFunc with a user 

context pointer that, in this case, can be the SC_

MODULE pointer to an instance of MyMonitor. 

This allows imported HDL callable C functions 

to be context sensitive.

Using this relatively simple technique provides 

a powerful mechanism for inter-language 

process synchronization that can be used in a 

variety of ways. For example, one could defi ne a 

SystemC “interrupt service” module. Inside this 

module could be a thread that does nothing but 

blocks for interrupts from the HDL side. Once 

they occur, the HDL side can call an imported C 

“service routine” service the interrupt, or notify 

some other pending thread to do it.

SYSTEMVERILOG DPI 
ADAPTATION

The SystemVerilog 3.1 DPI [3] evolved from 

several earlier non-standard inter-language 

function call interfaces, notably, OpenVera’s 

DirectC [2] and SUPERLOG CBlend [7]. The 

DirectC interface was donated to Accellera 

by Synopsys and evolved into the current 

SystemVerilog DPI.
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The SystemVerilog DPI allows the creation of 

two types of functions:

• imported functions – defi ned in C, 

called from HDL

• exported functions – defi ned in HDL, 

called from C

Imported and exported functions provide an 

ideal mechanism over which to implemented 

untimed, transaction-based synchronizations 

and data exchange between models in the HVL 

domain and transactors in the HDL domain.

By carefully crafting DPI function call 

interfaces between HDL models and C models, 

a user allows function arguments to serve as 

untimed transactions that fl ow in either the 

C-to-HDL direction or the HDL-to-C direction, 

between C models and transactors.

HDL-BASED TRANSACTORS

The modeling of transactors in HDL has three 

advantages over co-simulation and HVL-based 

transactor solutions. First, it is familiar to users 

and therefore easy to use. Complex transactors 

can be written in a familiar HDL instead of C 

or other HVLs that are ill-suited for writing 

hardware-oriented models with detailed timing 

behavior.

Secondly, function-call interfacing to those 

transactors is easily scalable to multiple HVL 

environments. Because the SystemVerilog DPI 

standard is defi ned to be ANSI C, transaction 

interfaces can be created for other HVLs 

in addition to SystemC. Examples include 

Verisity’s e language and OpenVera--both of 

which provide native support for C interfacing. 

Other transaction-level modeling solutions 

have been restricted to a single, rigid HVL 

environment that doesn’t promote the reuse 

of transactors. The problem is that those

transactors must be written in that specifi c

HVL. Modeling transactors in HDL and coupling 

HVL to them with function calls avoids this 

problem.

Thirdly, transaction-accurate coupling 

promotes effi ciency in high-performance HDL 

simulation platforms, such as emulators or 

accelerators. The coupling isn’t confi ned by the 

low communication bandwidth of conventional, 

signal-oriented API interfaces. Whole 

transactions tend to occur far less frequently 

than the events on the signals that they 

trigger. These aspects dramatically improve 

the performance of hardware-accelerated 

simulations. 
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FOREWORD

On August 3rd of 2005, Accellera 

unanimously approved the new OVL library as a 

standard, based on the work of the OVL Verilog 

and System Verilog (OVL-VSVA) technical 

committee. 

In my role as chair of the Accellera OVL-VSVA 

committee, I had the privilege to work with 

industry experts from leading EDA vendors as 

well as end-users of OVL to get their know-how 

and insight on how we can enable non-expert 

users to take advantage of advanced verifi cation 

tools, methodologies and techniques.

In this article I will explain what OVL is 

and how to use it through a simple example 

and explanation of what the various control 

parameters are. I will also outline a methodology 

on how to begin taking advantage of OVL. 

WHAT IS STANDARD OVL?

At the time this article was written, the OVL 

library was composed of 32 assertion checkers 

that verify specifi c properties of a design, as well 

as capture coverage metrics. By using a single, 

well-defi ned interface, OVL provides designers, 

integrators, and verifi cation engineers an open, 

vendor-independent interface for functional 

verifi cation using static and dynamic formal 

verifi cation and simulation engines. OVL also 

documents design intent.

OVL assertion checkers are instances of 

modules whose purpose in the design is to 

guarantee that some conditions hold true. 

Assertion checkers are composed of one or 

more properties, a message, a severity, and 

coverage.

For example, take a look at OVL ‘assert_

never’. This assertion checks that the ‘test_

expr’ test expression does not evaluate to TRUE 

at each rising edge of a clock ‘clk’. In cases 

where the test expression contains unknowns, 

the checker can fl ag this situation as well.

assert_never #(
  /* severity_level   */     `OVL_ERROR, 
  /* property_type   */    `OVL_ASSERT,
  /* msg                    */     “Register A < Register B”,
  /* coverage_level */     `OVL_COVER_ALL) 
  valid_checker_inst(
   /* clock  */     clk,
  /* reset  */     reset_n,

  /* test_expr  */     regA < regB );

The parameters in this simple ‘assert_never’ 

example illustrate the control an OVL user has 

over the individual assertions. For example, it 

is often the case that you want to guard and 

verify correct input and output behavior, and 

by using the ‘severity_level’, you can report the 

importance of the check. You could even stop 

the simulation run, if desired, by setting the 

‘severity_level’ to `OVL_FATAL.

The ‘property_type’ determines whether to 

use the assertion checker as an assert property 

or an assume property. Setting the ‘property_

type’ to OVL_ASSUME tells the verifi cation 

engines that the OVL checker is a constraint 

that should not be checked but assumed. 

By default OVL checker fi rings are reported 

as a “VIOLATION”, but by using the ‘msg’ 

parameter you can specify that a more 

meaningful message is reported.

An example of a fi ring is illustrated below.

# OVL_ERROR : ASSERT_NEVER : Register A < 
Register B : : severity 1 : time 900 : DUT.valid_
checker_inst.ovl_error_t

The capture of cover points is built into OVL 

checkers. This capability is controlled by the 

‘coverage_level’ parameter. In the ‘assert_

one_hot’ checker, for example, one of the cover 

points reports if all possible combinations of 

one-hot values are evaluated, or as illustrated 

below, if the ‘test_expression’ actually 

changed. This provides good insight into how 

well the test environment exercises the circuit 

and whether any coverage holes exist.

# OVL_COVER_POINT : ASSERT_ONE_HOT : 
test_expr_change covered : time 1300 : DUT.

check_fsm_is_onehot.ovl_cover_t

All OVL assertion checkers call a number 

of standard system tasks to check for correct 

usage of parameter values, error handling, 

reporting, and so forth. They also allow for 

customization to facilitate the integration of 

OVL into your verifi cation environment.

WHAT IS IN STANDARD OVL?

The OVL library includes a number of 

assertion checker classes, as listed in the 

text box on the following page. The full list of 

checkers can be found in the side bar at the end 

of the article.

Adopting Assertion-Based Verification with Accellera Standard Open 
Verification Library by Kenneth Larsen, Mentor Graphics Design Verifi cation and Test Division & Dennis Brophy, Mentor Graphics
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GETTING STARTED 
WITH STANDARD OVL

The number of available checkers in OVL 

may be overwhelming to new users. A few 

guidelines will help determine where to add OVL 

checkers for both HDL simulation and formal 

verifi cation.

• Add checkers where you make an 

assumption. For example, where you expect 

a signal will be available for at least n-clock 

cycles; and when if one event happens 

then another will happen. ‘assert_always’, 

‘assert_never’, ‘assert_implication’ are 

examples of checkers that can be used here.

• Add checkers to fi nite state machines 

(FSM) to check for illegal transitions, illegal 

states, and that you do not stay in a state 

longer than expected. Checkers such as 

‘assert_no_transition’ and ‘assert_time’ 

can be used for this. Use the coverage 

information obtained by the checker to 

ensure that all states of the FSM have been 

covered during simulation. 

• Add checkers to check for legal ranges. 

For example, ‘assert_range’ for addresses 

to memory structures. Also, checking for 

underfl ow and overfl ow is very valuable. 

You can use ‘assert_underfl ow’ and 

‘assert_overfl ow’ for counters that are not 

allowed to wrap around. 

• For memory structures, FIFOs are 

always a good target for adding checkers, 

because many bugs tend to creep in to 

them. Another use of checkers is to ensure 

correct behavior and seek out bugs. 

‘assert_fi fo-index’ can be used to ensure 

that a FIFO pointer should never underfl ow 

or overfl ow

• Add checkers to interfaces to ensure 

the correct exchange of information. For 

example, if you send a request, you should 

receive a grant within a given number of 

cycles; and that the ‘I am done’ signal 

must assert within a given set of cycles 

after the leader signal was raised. ‘assert_

handshake’, ‘assert_unchange’, ‘assert_

win_change’ are examples of checkers that 

can be used.

Looking ahead, we see a movement by 

the advanced users of assertions and ABV 

towards completely “hardening” the design 

interface with checkers monitoring for all illegal 

behaviors. In this scenario, by defi nition, all 

behavior that is not caught by the checkers 

must be an acceptable behavior. This will 

provide a number of benefi ts, such as removing 

corner-case bugs, reducing “contract break” 

bugs, and helping verifi cation engineers target 

their test efforts. If a fi ring does occur, it means 

that you have found a bug in a block that 

interacts with your block, that you or your peer 

designer have misunderstood the specifi cation 

about your interface, or that you have a bug in 

your checker. An article on this subject will be 

submitted at a later date.

But as always, keep it simple, and don’t 

repeat what you just wrote in your RTL.

USING STANDARD OVL

The OVL library has a single interface 

and multiple implementations. It is currently 

provided in Verilog-95 and SystemVerilog. 

Other language implementations, such as PSL 

and VHDL, are expected in the near term, but 

no matter the underlying implementation, the 

simple use-model will continue to be the same.

To use the OVL checkers, you have to specify 

which capability to enable, as well as the desired 

implementation language to use. These settings 

can often be added to a Verilog command fi le 

to simplify the compilation process. Here is a 

small example of one such fi le.

// ovl.f - OVL Verilog command fi le 
+libext+.v+.vlib+.sv
// Enable OVL checkers and coverage capabilities
+defi ne+OVL_ASSERT_ON
+defi ne+OVL_COVER_ON
-y <Accellera_installation_dir>/std_ovl

+incdir+<Accellera_installation_dir>/<std_ovl>

To compile a design with ModelSim using the 

Verilog implementation of OVL use

vlog +defi ne+OVL_VERILOG –f ovl.f <design fi les>

To compile a design with Questa using the 

SystemVerilog implementation of OVL use

vlog –sv +defi ne+OVL_SVA –f ovl.f <design fi les>

To compile a design to be used with 0-In static 

formal verifi cation, either use the same setup 

as for ModelSim and Questa or use the ‘–ovl’ 

and ‘–ovl_cov’ command line options. T

The library will automatically be detected 

and loaded.

OVL Assertion checker Class Behavior checked

Combinatorial assertions with combinational logic

Single-cycle assertions In the current cycle

2-cycle assertions for transitions from the current cycle to the next

n-cycle assertions for transitions over a fi xed number of cycles

Event-bounded assertions between two events
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Assertion Description

assert_always Ensures that the value of a specifi ed expression is TRUE.

assert_always_on_edge Ensures that the value of a specifi ed expression is TRUE when a sampling event undergoes a specifi ed transition.

assert_change Ensures that the value of a specifi ed expression changes within a specifi ed number of cycles after a start event initiates checking.

assert_cycle_sequence Ensures that if a specifi ed necessary condition occurs, it is followed by a specifi ed sequence of events

assert_decrement Ensures that the value of a specifi ed expression changes only by the specifi ed decrement value.

assert_delta Ensures that the value of a specifi ed expression changes only by a value in the specifi ed range.

assert_even_parity Ensures that the value of a specifi ed expression has even parity

assert_fi fo_index Ensures that a FIFO-type structure never overfl ows or underfl ows

assert_frame
Ensures that when a specifi ed start event is TRUE, the a specifi ed expression must not evaluate TRUE before a minimum number 

     of clock cycles and must transition to TRUE no later than a maximum number of clock cycles

assert_handshake Ensures that specifi ed request and acknowledge signals follow a specifi ed handshake protocol.

assert_implication Ensures that a specifi ed consequent expression is TRUE if the specifi ed antecedent expression is TRUE.

assert_increment Ensures that the value of a specifi ed expression changes only by the specifi ed increment value.

assert_never Ensures that the value of a specifi ed expression is not TRUE.

assert_never_unknown Ensures that the value of a specifi ed expression contains only 0 and 1 bits when a qualifying expression is TRUE.

assert_next Ensures that the value of a specifi ed expression is TRUE a specifi ed number of cycles after a start event.

assert_no_overfl ow Ensures that the value of a specifi ed expression does not overfl ow.

assert_no_transition Ensures that the value of a specifi ed expression does not transition from a start state tot the specifi ed next state.

assert_no_underfl ow Ensures that the value of a specifi ed expression does not underfl ow.

assert_odd_parity Ensures that the value of a specifi ed expression has odd parity.

assert_one_cold Ensures that the value of a specifi ed expression is one-cold (or equals an inactive state value, if specifi ed)

assert_one_hot Ensures that the value of a specifi ed expression is one-hot.

assert_proposition Ensures that the value of a specifi ed expression is always compositionally TRUE.

assert_quiescent_state
Ensures that the value of a specifi ed state expression equals a corresponding check value if a specifi ed sample event has transitioned 

     to TRUE.

assert_range Ensures that the value of a specifi ed expression is in a specifi ed range.

assert_time Ensures that the value of a specifi ed expression remains TRUE for a specifi ed number of cycles after a start state.

assert_transition Ensures that the value of a specifi ed expression transitions properly from a start state to the specifi ed next state.

assert_transition Ensures that the value of a specifi ed expression transitions properly from a start state to the specifi ed next state.

assert_unchange Ensures that the value of a specifi ed expression does not change for a specifi ed number of cycles after a start event initiates checking.

assert_width
Ensures that when value of a specifi ed expression is TRUE, it remains TRUE for a minimum number of clock cycles and transitions from 

     TRUE no later than a maximum number of clock cycles.

assert_win_change Ensures that the value of a specifi ed expression changes in a specifi ed window between a start even and an end event.

assert_win_unchange Ensures that the value of a specifi ed expression does not change in a specifi ed window between a start event and an end event.

assert_window Ensures that the value of a specifi ed expression is TRUE in a specifi ed window between a start event and an end event.

assert_zero_one_hot Ensures that the value of a specifi ed expression is zero or one-hot.
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