Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IQ
      • Verification IP
      • Static-Based Techniques
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Introduction to UVM
      • UVM Basics
      • Advanced UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Featured & On-Demand

      • Continuous Integration - March 28th
      • Questa Verification IQ - April 11th
      • SystemVerilog Assertions
      • SoC Design & Functional Safety Flow
      • 2022 Functional Verification Study
      • Design Solutions as a Sleep Aid
      • CDC and RDC Assist
      • Formal and the Next Normal
      • Protocol and Memory Interface Verification
      • Webinar Calendar
    • On-Demand Library

      • Practical Flows for Continuous Integration
      • Lint vs Formal AutoCheck
      • The Three Pillars of Intent-Focused Insight
      • Formal Verification Made Easy
      • Fix FPGA Failures Faster
      • HPC Protocols & Memories
      • FPGA Design Challenges
      • High Defect Coverage
      • The Dog ate my RTL
      • Questa Lint & CDC
      • Complex Safety Architectures
      • Data Independence and Non-Determinism
      • Hierarchical CDC+RDC
      • All On-Demand Recordings
    • Recording Archive

      • Aerospace & Defense Tech Day
      • Exhaustive Scoreboarding
      • Improving Initial RTL Quality
      • CDC Philosophy
      • Hardware Emulation Productivity
      • Visualizer Debug Environment
      • Preparing for PCIe 6.0: Parts I & II
      • Automotive Functional Safety Forum
      • Siemens EDA Functional Verification
      • Improving Your SystemVerilog & UVM Skills
      • All Webinar Topics
    • Conferences & WRG

      • Industry Data & Surveys
      • DVCon 2023
      • DVCon 2022
      • DVCon 2021
      • Osmosis 2022
      • All Conferences
    • Siemens EDA Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • EDA Xcelerator Academy(Learning Services) Verification Training, Badging and Certification
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification IQ
      • Verification Horizons Blog
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - March 2023
      • Verification Horizons - December 2022
      • Verification Horizons - July 2022
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Academy News
      • Contact Us
    • Training

      • Learning @OneGlance (PDF)
      • SystemVerilog & UVM Classes
      • Siemens EDA Classes
  • Home
  • News
  • Verification Horizons - March 2023 Issue

Verification Horizons - March 2023 Issue

Verification Horizons Articles:

  • Everything, everywhere, all at once: Big data reimagines verification predictability and efficiency

  • by Darron May - Siemens EDA

    Big data is a term that has been around for many years. The list of applications for big data is endless, but the process stays the same: capture, process, and analyze. With new, enabling verification solutions, big data technologies can improve your verification process efficiency and predict your next chip sign-off.

    The ability to see gathered metrics over time can provide great insights into the process. Historical coverage data trended over time alone can give indications of how much more time is needed to complete sign-off. Being able to plot these single metrics together on the same graph also opens information that is often lost. By providing a big data infrastructure, with state-of-the-art technologies, within the verification environment, the combination of all verification metrics allows all resources to be used as efficiently as possible and enables process improvements using predictive analysis.

    Predictive analytics is a part of machine learning (ML) and is one of the major fundamentals that make the concepts of big data extremely interesting when applied to the verification process.

  • Democratizing digital-centric mixed-signal verification methodologies

  • by Sumit Vishwakarma - Siemens EDA

    As the world of technology continues to evolve, the way we design and verify circuits is also evolving. The next-generation automotive, imaging, IoT, 5G, computing, and storage markets are driving the strong demand for increasing mixed-signal content in modern systems on chips (SoCs). Mixed-signal designs are a combination of tightly interwoven analog and digital circuitry. There are two main reasons for increased mixed-signal contents in today's SoC.

    Firstly, machines today are consuming more and more real-world analog information, such as light, touch, sound, vibration, pressure, or temperature, and bringing it into the digital world for processing. Secondly, technology scaling is enabling integration of more functionality, increased compute power and reduce power consumption in new generation chips. While digital circuits have seen improved PPA (Power Performance Area) efficiency due to CMOS scaling, the same has not been true for analog circuits. As a result, integrated circuits that were primarily analog are transitioning into a new category of "digitally-assisted analog" to take advantage of the benefits of scaling.

  • Lane margining at receiver and its application through pipe message bus

  • by Sachin Mishra - Siemens EDA

    PCI Express® (PCIe) announced its fourth generation (PCIe 4.0 standard) in year 2017.With PCIe Gen 3 the speed of operation was 8 GT/s (giga transfers per second) and error rate is manageable (10-12) but with doubling the frequency with each successive generations performance degradation become more pronounced due to variety of reasons like losses in the channels due to different components, reflections in the channel, jitter and cross talk between lanes in a multi-lane system and other parameters varying with process, voltage and temperature (PVT). Solving this problem is another challenge for the designers but the prior issue is to identify them in the live system as they occur since there was no standard approach to identify or test the faulty links in such complex systems. Debugging with probes is also quite a difficult and expensive task and sometimes next to impossible due to increasing complexity and compactness of the coming system on chips.

    Finally, the issue is addressed with the introducing of lane margining at the receiver in PCIe gen4 allowing the designers to measure the performance variation in their system. Lane margining helps in measuring the available electrical margin at each receivers of a system. This article describes lane margining feature and how it helps system designers to deliver a more robust system.

  • The RISC-V Verification Interface (RVVI) – test infrastructure and methodology guidelines

  • by Aimee Sutton, Lee Moore, Kevin McDermott - Imperas Software

    The open standard ISA (Instruction Set Architecture) of RISC-V is at the forefront of a new wave of design innovation. The flexibility to configure and optimize a processor for the unique target application requirements has a lot of appeal in emerging and established markets alike. RISC-V can address the full range of compute requirements such as an entry-level microcontroller, a support processor (for such functions as power management, security etc.), right up to the state-of-the-art processor arrays with vector extensions for advanced AI (Artificial Intelligence) applications and HPC (High-Performance Computing).

    This wave of innovation is generating a tsunami in verification as more and more SoC development teams face the complexities of RISC-V processor verification. Processor verification is not new, but in the past most processor IP was single-sourced, and the basic assumption of the SoC verification plan was based on high-quality pre-verified IP cores.

  • A formal-based approach for efficient RISC-V processor verification

  • by Laurent Arditi, Paul Sargent, Thomas Aird, Lauranne Choquin - Codasip

    The openness of RISC-V allows customizing and extending the architecture and microarchitecture of a RISC-V based core to meet specific requirements. This appetite for more design freedom is also shifting the verification responsibility to a growing community of developers. Processor verification, however, is never easy. The very novelty and flexibility of the new specification results in new functionality that inadvertently creates specification and design bugs.

    During the development of an average complexity RISC-V processor core, you can discover hundreds or even thousands of bugs. As you introduce more advanced features, you introduce new bugs that vary in complexity. Certain types of bugs are too complex for simulation to find them. You must augment your RTL verification methods by adding formal verification. From corner cases to hidden bugs, formal verification allows you to exhaustively explore all states within a reasonable amount of processing time.

    In this article, we go through a formal-based, easy-to-deploy RISC-V processor verification application. We show how, together with a RISC-V ISA golden model and RISC-V compliance automatically generated checks, we can efficiently target bugs that would be out of reach for simulation. By bringing a high degree of automation through a dedicated set of assertion templates for each instruction, this approach removes the need for devising assertions manually, thus improving the productivity of your formal verification team.

  • Jumpstart your formal verification with a little help

  • by Doug Smith - Doulos

    An advantage of using formal verification is how quickly a formal environment can be created with a few simple properties that immediately start finding design issues. However, not all design behaviors are easily modeled using SystemVerilog's property syntax, resulting in complex or numerous properties, or behaviors that require more than just SVA. That is where helper code comes to the rescue. Helper code can significantly reduce the complexity of properties as well as be used to constrain formal analysis. Likewise, formal analysis may need to reduce the complexity of the problem and state space, which helper code can also help. So where are some places to use helper code and when? This article looks at how helper code can be used to simplify our properties, model formal abstractions, constrain formal inputs, and aid formal analysis.

  • Resolving metastability issues for multi-clock SOC environment for I2C

  • by Priyanka Changan, Darshan Sarode, Avnita Pal, Priyanka Gharat - Silicon Interfaces

    The increasing complexity of SoCs has resulted in a higher demand for clock domain crossing verification. As more functionality is integrated into chips and data is constantly being transferred between clock domains, ensuring proper communication across these domains has become a critical aspect of deep submicron design verification.

    This article provides an in-depth guide on establishing a clock domain crossing environment using Questa CDC tools. As an example, we delve into the use of Synchronizers to mitigate metastable conditions in an I2C design.

    Our goal is to demonstrate how utilizing the Questa CDC Tool can enhance clock stability and improve your design output. To better illustrate the concepts, we present the I2C protocol with two separate clock domains as a case study. This section will clarify key concepts related to implementing two clock domains in a circuit.

View the latest issue.

← Back to News

Siemens Digital Industries Software

Siemens Digital Industries Software

#TodayMeetsTomorrow

Portfolio

  • Cloud
  • Mendix
  • Electronic Design Automation
  • MindSphere
  • Design, Manufacturing and PLM Software
  • View all Portfolio

Explore

  • Community
  • Blog
  • Online Store

Siemens

  • About Us
  • Careers
  • Events
  • News and Press
  • Customer Stories
  • Partners
  • Trust Center

Contact

  • VA - Contact Us
  • PLM - Contact Us
  • EDA - Contact Us
  • Worldwide Offices
  • Support Center
  • Give us Feedback
© Siemens 2023
Terms of Use Privacy Statement Cookie Statement DMCA