Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IQ
      • Verification IP
      • Static-Based Techniques
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Introduction to UVM
      • UVM Basics
      • Advanced UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Featured & On-Demand

      • Questa Verification IQ - April 11th
      • Continuous Integration
      • SystemVerilog Assertions
      • SoC Design & Functional Safety Flow
      • 2022 Functional Verification Study
      • Design Solutions as a Sleep Aid
      • CDC and RDC Assist
      • Formal and the Next Normal
      • Protocol and Memory Interface Verification
      • Webinar Calendar
    • On-Demand Library

      • Practical Flows for Continuous Integration
      • Lint vs Formal AutoCheck
      • The Three Pillars of Intent-Focused Insight
      • Formal Verification Made Easy
      • Fix FPGA Failures Faster
      • HPC Protocols & Memories
      • FPGA Design Challenges
      • High Defect Coverage
      • The Dog ate my RTL
      • Questa Lint & CDC
      • Complex Safety Architectures
      • Data Independence and Non-Determinism
      • Hierarchical CDC+RDC
      • All On-Demand Recordings
    • Recording Archive

      • Aerospace & Defense Tech Day
      • Exhaustive Scoreboarding
      • Improving Initial RTL Quality
      • CDC Philosophy
      • Hardware Emulation Productivity
      • Visualizer Debug Environment
      • Preparing for PCIe 6.0: Parts I & II
      • Automotive Functional Safety Forum
      • Siemens EDA Functional Verification
      • Improving Your SystemVerilog & UVM Skills
      • All Webinar Topics
    • Conferences & WRG

      • Industry Data & Surveys
      • DVCon 2023
      • DVCon 2022
      • DVCon 2021
      • Osmosis 2022
      • All Conferences
    • Siemens EDA Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • EDA Xcelerator Academy(Learning Services) Verification Training, Badging and Certification
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification IQ
      • Verification Horizons Blog
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - March 2023
      • Verification Horizons - December 2022
      • Verification Horizons - July 2022
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Academy News
      • Contact Us
    • Training

      • Learning @OneGlance (PDF)
      • SystemVerilog & UVM Classes
      • Siemens EDA Classes
  • Home
  • Verification Horizons
  • October 2012 | Volume 8, Issue 3

October 2012 | Volume 8, Issue 3

Verification Horizons - Tom Fitzpatrick, Editor

Verification Horizons Complete Issue:

  • Download  Verification Horizons - October 2012 | Volume 8, Issue 3 - Hi-Resolution Download - 29.5 MB

Verification Horizons Articles:

There's Productivity. And Then There's Productivity

by Tom Fitzpatrick, Editor and Verification Technologist, Mentor Graphics Corporation

Ah, metrics! There is no substitute for clear, objective data when evaluating a player, or a process for that matter. A productive quarterback is measured most of all on how many times he wins, especially in the Super Bowl (advantage: Brady), but there are other metrics that can be used as well. For verification, productivity really comes down to being able to reliably determine if your chip will run correctly as efficiently as possible. Just as the quarterback with the better completion percentage doesn't always win, verification productivity is about much more than just how fast your simulator runs a particular test. We must think about the full spectrum of verification tasks and the tools and technology available to apply to them. Just as a football game is ultimately determined by the final score, all that matters to us as verification engineers is how well we can determine the correctness of our design within the schedule allotted. Keep these thoughts in mind as you read this month's issue of Verification Horizons.

ST-Ericsson Speeds Time to Functional Verification Closure with Questa Verification Platform

by Rachida El IDRISSI, ST-Ericsson

As is true in many engineering projects, the most difficult step in verification is knowing when you are done. The challenge of reaching verification closure stems mostly from increasing complexity. Recall that as a general rule of thumb, verification cycles rise at some multiple to the number of gates in a design, which is enough to give one pause in the age of billion-gate designs. Other obstacles on the way to closure include new verification methodologies and their sometimes-steep learning curves, aggressive milestones that sometimes force verification teams to truncate their efforts, and the difficulty of reusing verification components.

The Top Five Formal Verification Applications

by Roger Sabbagh, Mentor Graphics

It's no secret. Silicon development teams are increasingly adopting formal verification to complement their verification flow in key areas. Formal verification statically analyzes a design's behavior with respect to a given set of properties. Traditional formal verification comes in the form of model checking which requires hand-coded properties, along with design constraints. While there certainly are some design groups who continue to be successful with that approach, what are getting more widespread adoption in the industry are the automatic approaches which require much less manual setup. Let's take a look at the top five applications
being used across the industry today.

Three Steps to Unified SoC Design and Verification

by Shabtay Matalon and Mark Peryer, Mentor Graphics

Developing a SoC is a risky business in terms of getting it right considering the technical complexity involved, managing the mixture of hardware and software design disciplines, and finding an optimal trade-off between design performance and power. One way to reduce these risks is to use a design and verification flow that is scalable enough to handle the complexity and is flexible enough to explore architectural alternatives
early in the design cycle before implementation starts.

Mentor's System Design and Verification flow encapsulates a range of design and verification disciplines such as: embedded software; SystemC platform design and validation tools; and HDL simulation tools that can be used in various combinations using common interfaces. The flow originally came out of pilot work for the TSMC ESL reference flow and has since matured into a methodology that allows Mentor's Sourcery™ CodeBench, the Vista™ ESL platform, and the Questa® platform to be used together.

Evolution of UPF: Getting Better All the Time

by Erich Marschner, Product Manager, Questa Power Aware Simulation, Mentor Graphics

Power management is a critical aspect of chip design today. This is especially true for chips designed for portable consumer electronics applications such as cell phones and laptop computers, but even non-portable systems are increasingly optimizing power usage to minimize operation costs and infrastructure requirements. Power management requirements must be considered right from the beginning, and the design and implementation of power management must occur throughout the flow, from early RTL design on through physical implementation. Verification of the power management logic is also essential, to ensure that a device operates correctly even when the power to various subsystems or components is turned off or varied to optimally meet operating requirements.

Improving Analog/Mixed-Signal Verification Productivity

by Ahmed Eisawy, Mentor Graphics

Nearly all of today's chips contain Analog/Mixed-Signal circuits. Although these often constitute only 25% of the total die, they may be 100% of the product differentiation and also, unfortunately, 80% of the problems in actually getting the chip to market in a cost effective and timely way. With growing complexity and shrinking time-to-market Mixed-Signal verification is becoming an enormous challenge for designers, and improving Mixed-Signal verification performance and quality is critical for today's complex designs.

The challenges in mixed-signal verification stem from two opposing forces, time-to-market constraints and shrinking process technologies.

VHDL-2008: Why It Matters

by Jim Lewis, SynthWorks VHDL Training

VHDL-2008 (IEEE 1076-2008) is here! It is time to start using the new language features to simplify your
RTL coding and facilitate the creation of advanced verification environments.

VHDL-2008 is the largest change to VHDL since 1993. An abbreviated list of changes includes:

• Enhanced Generics = better reuse
• Assertion language (PSL) = better verification
• Fixed and floating point packages = better math
• Composite types with elements that are unconstrained arrays = better data structures
• Hierarchical reference = easier verification
• Simplified Sensitivity List = less errors and work
• Simplified conditionals (if, ...) = less work
• Simplified case statements = less work.

← Back to Verification Horizons

Siemens Digital Industries Software

Siemens Digital Industries Software

#TodayMeetsTomorrow

Portfolio

  • Cloud
  • Mendix
  • Electronic Design Automation
  • MindSphere
  • Design, Manufacturing and PLM Software
  • View all Portfolio

Explore

  • Community
  • Blog
  • Online Store

Siemens

  • About Us
  • Careers
  • Events
  • News and Press
  • Customer Stories
  • Partners
  • Trust Center

Contact

  • VA - Contact Us
  • PLM - Contact Us
  • EDA - Contact Us
  • Worldwide Offices
  • Support Center
  • Give us Feedback
© Siemens 2023
Terms of Use Privacy Statement Cookie Statement DMCA