

SystemVerilog Transactions, UVM and C
Correlation in a functional verification environment

Rich Edelman, Siemens EDA Fremont, CA US (rich.edelman@siemens.com)

Tomoki Watanabe, Siemens Japan, Tokyo, Japan (tomoki.watanabe@siemens.com)

Abstract— Transaction level modeling and transaction level debug have been in use for years in SystemVerilog and Verilog

simulation and verification, but not as available in VHDL, perhaps not used in GLS simulation and C testbenches, and taking

new forms in system level modeling. This paper re-introduces and refreshes transaction recording and debug and suggests how

each abstraction level can be used productively with worked examples runnable by the reader.

Keywords— SystemVerilog, Verilog, VHDL, Transaction recording, Transaction debug, C testbench, bind

I. INTRODUCTION

As designers build larger and larger chips, it becomes more and more important for verification engineers to think about

verification at higher level abstractions. Transactions can be recorded from low level details like clock edges and bus

transfers all the way up the abstraction tree to system level interactions and tracking behavioral models in C or other high-

level languages. This is important because most of this kind of debug needs to correlate two things. Perhaps two sets of

transactions – one from the high level and one from the low level. Perhaps what needs correlated is the low-level signal

changes with the top-level abstraction activity. Perhaps the entire abstraction tree must be correlated with itself – to

understand who is causing what events and transactions.

The waveform window in a traditional functional design and verification debugger is ideal for this kind of correlation –

time-based correlation. The signals and transactions occupy the same timeline and can be reasoned about in the wave

window. New views can also be created. Often the actual timing of the transaction is not important, but rather whether a

transaction completes before another – the relative position of starting and ending transactions.

This paper will review the various APIs and methods for transaction recording and demonstrate the concepts using an

example. That example can be reused in reader code and is open source.

II. TRANSACTION RECORDING BASICS

A transaction recording interface is commonly available, including creating a transaction stream, beginning and ending

a transaction, adding attributes, adding relationships and signal activity.

• $create_transaction_stream

• $begin_transaction

• $end_transaction

• $free_transaction

• $add_attribute

An example using such an interface is below. This example does nothing useful, except demonstrate using the API to

model a channel with 4 out-of-order transactions in-flight at once.

module M(input clk);

 int stream;

 initial begin

 stream = $create_transaction_stream("stream", "kind");

 end

 sub_channel s0(clk, 0, stream);

 sub_channel s1(clk, 1, stream);

 sub_channel s2(clk, 2, stream);

 sub_channel s3(clk, 3, stream);

endmodule

mailto:rich.edelman@siemens.com
mailto:tomoki.watanabe@siemens.com

2

module sub_channel(input clk, input int inflight, int stream);

 always @(posedge clk) begin: LOOP

 ...

 begin

 req_rsp = REQ;

 tr = $begin_transaction(stream, $sformatf("tr%0d", tr_count));

 $add_attribute(tr, req_rsp, "req_rsp");

 $add_attribute(tr, addr, "addr");

 payload = 0;

 $add_attribute(tr, payload, "payload");

 $add_attribute(tr, id, "id");

 $add_attribute(tr, l_serial_number, "serial_number");

 #10;

 $end_transaction(tr);

 $free_transaction(tr);

 end

 ...

 begin

 req_rsp = RSP;

 tr = $begin_transaction(stream, $sformatf("tr%0d", tr_count));

 $add_attribute(tr, req_rsp, "req_rsp");

 $add_attribute(tr, addr, "addr");

 payload = $random() % 1024; // Fetch the payload

 $add_attribute(tr, payload, "payload");

 $add_attribute(tr, id, "id");

 $add_attribute(tr, l_serial_number, "serial_number");

 delay = 10;

 #delay;

 #10;

 $end_transaction(tr);

 $free_transaction(tr);

 end

 end

endmodule

Transactions

Sub-channel 0

Sub-channel 1

Sub-channel 2

Sub-channel 3

3

III. BUILDING YOUR OWN MONITOR

This section builds on previous work on building monitors. [2] Monitors can be build in many different ways. They need

to have a start and an end, attributes and something to “trigger” the start. For example a clock signal, a value change or a

condition like “ready & valid”.

A. Building a Verilog based monitor to record transactions.

A Verilog based monitor could be implemented as a module or an interface. The job of the monitor is to recognize a

transaction. A monitor usually monitors a lower level abstraction like signal changes on wires and turns those into higher

level abstractions – transactions. The monitor can be connected to the “wires” either as a bind, or simply connected to the

wires by instantiation in the correct place. Bind is quite convenient, since no existing RTL code needs to change.

The register and memory monitors in following sections are examples of Verilog based monitors.

B. Building a UVM based monitor to record transactions.

A UVM based monitor is normally implemented as a class which is attached to an interface. It could also be an interface

(with its wires). This is analogous to the Verilog based monitor attached to wires. A UVM based monitor might produce a

“transaction class” and send it to other “subscribers”. Please consult UVM instructions for more information on subscribers

in the UVM. For this paper, a monitor is going to record transactions.

Given signals in an interface

 reg valid;

 reg ready;

 reg rw;

 reg [3:0] addr;

 reg [3:0] wdata;

 reg [3:0] rdata;

A monitor could be written using a forever thread. This thread is in an interface, but could also be in a class. The code

below is a simple monitor which prints messages.

forever begin

 @(posedge clk);

 if ((ready == 1) && (valid == 1)) begin

 @(posedge clk);

 if (rw == READ) // READ

 $display("MONITOR: %m: READ addr=%0d, data=%0d", addr, wdata);

 else // WRITE

 $display("MONITOR: %m: WRITE addr=%0d, data=%0d", addr, rdata);

 end

end

Resulting in output like

Transactions

Sub-channel 0

4

MONITOR: top.memory_interface_instance.monitor: READ addr=0, data=1

MONITOR: top.memory_interface_instance.monitor: READ addr=13, data=14

MONITOR: top.memory_interface_instance.monitor: READ addr=10, data=11

MONITOR: top.memory_interface_instance.monitor: READ addr=7, data=8

MONITOR: top.memory_interface_instance.monitor: READ addr=4, data=5

MONITOR: top.memory_interface_instance.monitor: READ addr=13, data=14

MONITOR: top.memory_interface_instance.monitor: READ addr=14, data=15

MONITOR: top.memory_interface_instance.monitor: READ addr=15, data=0

MONITOR: top.memory_interface_instance.monitor: WRITE addr=2, data=10

MONITOR: top.memory_interface_instance.monitor: WRITE addr=3, data=10

MONITOR: top.memory_interface_instance.monitor: WRITE addr=0, data=10

But with transaction recording added, there is much more information available and it can be viewed in the wave window.

The monitor is extended to record transactions:

 int stream;

 int tr;

...

 string tr_type;

 stream = $create_transaction_stream("stream", "kind");

 forever begin

 @(posedge clk);

 if ((ready == 1) && (valid == 1)) begin

 @(posedge clk);

 tr = $begin_transaction(stream, "tr");

 if (rw == READ) begin // READ

 $display("MONITOR: %m: READ addr=%0d, data=%0d", addr, rdata);

 tr_type = "READ";

 $add_attribute(tr, tr_type, "tr_type");

 $add_attribute(tr, addr, "addr");

 $add_attribute(tr, rdata, "data");

 end

 else begin // WRITE

 $display("MONITOR: %m: WRITE addr=%0d, data=%0d", addr, wdata);

 tr_type = "WRITE";

 $add_attribute(tr, tr_type, "tr_type");

 $add_attribute(tr, addr, "addr");

 $add_attribute(tr, wdata, "data");

 end

 @(negedge clk);

 $end_transaction(tr);

 $free_transaction(tr);

 end

 end

IV. UVM TRANSACTION RECORDING

Transaction recording is woven through the UVM. There’s automation available which makes it very easy to generate

transactions. A transaction or sequence should either be instrumented with do_record () method or the field automation

macro method should be used. Most cautious users choose the do_record method. It offers more flexibility and ease of debug,

while requiring slightly more code to be written.

The UVM transaction recording is automatic. In addition to “regular” UVM Transaction Recording, this paper will

discuss the use of the UVM backdoor access, and how to instrument those access functions for transaction recording.

A. Instrumenting a transaction

Implement the do_record() below to record transactions. See the UVM user guide for the field automation method.

int gid;

5

int gserial_number;

class transaction extends uvm_sequence_item;

 `uvm_object_utils(transaction)

 bit [2:0] id; // 0 to 7

 bit [31:0] serial_number;

 rand int delay;

 rand RW_T rw;

 rand bit [31:0] addr;

 rand bit [31:0] data;

 constraint values {

 addr > 0; addr < 100;

 data >= 0; data < 8;

 delay > 3; delay < 10;

 }

 function new(string name = "transaction");

 super.new(name);

 id = gid++;

 serial_number = gserial_number++;

 endfunction

 function string convert2string();

 return $sformatf("id: %0d %s(%0d, %0d) #%0d", id, rw.name(), addr, data, serial_number);

 endfunction

 function void do_record(uvm_recorder recorder);

 super.do_record(recorder);

 `uvm_record_field("id", id);

 `uvm_record_field("serial_number", serial_number);

 `uvm_record_field("rw", rw.name());

 `uvm_record_field("addr", addr);

 `uvm_record_field("data", data);

 `uvm_record_field("delay", delay);

 endfunction

endclass

B. Backdoor Access

The UVM has built-in calls to access the DUT directly – so called backdoor access. The advantage of backdoor access

is its speed. A backdoor access is fast – no bus cycles are used. Almost no simulation. The backdoor access can be a read of

a write of values directly from the RTL.

The sequence below generates front-door reads and writes. Then it issues two sets of “writes” to three different registers.

class seq extends uvm_sequence#(transaction);

 `uvm_object_utils(seq)

 function new(string name = "seq");

 super.new(name);

 endfunction

 transaction t;

 task body();

 string name;

 `uvm_info(get_type_name(), "...running", UVM_MEDIUM)

 for (int i = 0; i < 1000; i++) begin

 name = $sformatf("t%0d", i);

 t = transaction::type_id::create(name);

 start_item(t);

6

 `uvm_info(t.get_type_name(), "...started transaction", UVM_MEDIUM)

 if (!t.randomize())

 `uvm_fatal(get_type_name(), "Randomize Failed")

 finish_item(t);

 `uvm_info(t.get_type_name(), "...finished transaction", UVM_MEDIUM)

 end

 uvm_hdl_deposit("top.memory_instance.regA", 1);

 uvm_hdl_deposit("top.memory_instance.regB", 2);

 uvm_hdl_deposit("top.memory_instance.regC", 3);

 #10;

 uvm_hdl_deposit("top.memory_instance.regA", 2);

 uvm_hdl_deposit("top.memory_instance.regB", 4);

 uvm_hdl_deposit("top.memory_instance.regC", 6);

 endtask

endclass

V. VHDL TRANSACTION RECORDING

VHDL can also log transactions. The PLI routines for Verilog are a library of calls to use. VHDL has a similar

mechanism. There is a library of calls. A simple VHDL example is below [3]

entity top is

end;

library IEEE;

 use IEEE.std_logic_1164.all;

library modelsim_lib;

 use modelsim_lib.transactions.all;

architecture arch of top is

begin

 process

 variable stream : TrStream := create_transaction_stream("Stream");

 variable tr: TrTransaction := 0;

 variable i : integer := 0;

 begin

 tr := begin_transaction(stream,"Tran1");

 add_attribute(tr, i, "beg");

 i := i + 1;

 wait for 1 ns;

 add_attribute(tr, i, "special");

 i := i + 1;

 wait for 1 ns;

 add_attribute(tr, i, "end");

 end_transaction(tr);

 free_transaction(tr);

 i := i + 1;

 wait for 1 ns;

 end process;

end;

Produces simple transactions as below

7

VI. TRANSACTION RECORDING IN A GATE LEVEL SIMULATION

UVM and RTL code is edited and adjusted as verification continues. Adding transaction recording is sometimes “just

better debug”. In a gate-level netlist, normally changes are not allowed – the gate-level netlist has been verified in some way.

Editing the code is often forbidden. Below a simple module MAJ is defined. And a simple MAJ_monitor is built. Any time

the ‘d’ signal – the output from MAJ – changes, a transaction will be recorded.

The MAJ_monitor is “bound” into the MAJ module using a bind statement.

module bind_module();

 bind MAJ MAJ_monitor monitor_instance(d, a, b, c, ab, bc, ac);

endmodule

The bind statement above creates an instance named monitor_instance in every instance of MAJ, and the bound in module

type is MAJ_monitor.

Maj_monitor and MAJ defined

module MAJ_monitor(input reg d, a, b, c, ab, bc, ac);

 int stream;

 int tr;

 initial begin

 stream = $create_transaction_stream("gate_stream", "kind");

 end

 always @(d) begin

 tr = $begin_transaction(stream, "MAJ_tr");

 $add_attribute(tr, {d, a, b, c}, "inputs_and_output");

 $add_attribute(tr, {ab, bc, ac}, "internal");

 #5;

 $end_transaction(tr);

 $free_transaction(tr);

 end

endmodule

module MAJ(output d, input a, b, c);

 and #4 ab_and(ab, a, b);

 and #4 bc_and(bc, b, c);

 and #4 ac_and(ac, a, c);

 or #4 d_or(d , ab, bc, ac);

endmodule

Notice that all the monitors create a stream, often in an initial block. Then a thread or process repeats based on a trigger,

recording a transaction at each “trigger event”. And we deftly avoid zero delay transactions. The #5 statement above prevents

a zero delay transaction. The 5 unit delay is a contrivance – and a convenience for the debugger.

VII. TRANSACTION RECORDING FROM C

Tests and models can be written in other languages – including C. SystemVerilog provides a very convenient way of

interfacing C with UVM and RTL – the DPI-C interface. Please see the UVM instructions for more information about DPI-

C. Think of the use of DPI below as the simulator providing a C-callable interface that a C test program or more can call.

The DPI layer below has wrapped the PLI transaction recording interface for export to a C application.

DPI Layer

8

 export "DPI-C" function create_transaction_stream;

 export "DPI-C" function begin_transaction;

 export "DPI-C" function end_transaction;

 export "DPI-C" function free_transaction;

 export "DPI-C" function add_attribute_int;

 function int create_transaction_stream(string name, string kind);

 int stream_handle;

 stream_handle = $create_transaction_stream(name, kind);

 return stream_handle;

 endfunction

 function int begin_transaction(int stream_handle, string name, int begin_time,

 int parent_handle);

 int tr_handle;

 if (parent_handle == -1)

 tr_handle = $begin_transaction(stream_handle, name);

 else

 tr_handle = $begin_transaction(stream_handle, name, , parent_handle);

 return tr_handle;

 endfunction

 function void end_transaction(int tr_handle);

 $end_transaction(tr_handle);

 endfunction

 function void free_transaction(int tr_handle);

 $free_transaction(tr_handle);

 endfunction

 function int add_attribute_int(int tr_handle, int value, string attribute_name);

 $add_attribute(tr_handle, value, attribute_name);

 endfunction

The C testprogram

Notice the cwrite and cread transactions. They wrap the call to ‘write()’ and ‘read()’ respectively. The write() and read()

calls are calling into the C interface offered by the UVM sequences in this case. The transaction logging is in C – it could

also have been in the UVM sequence task based layer.

testprogram.c

 int stream_handle;

 int transaction_handle;

 int read_transaction_handle;

 int write_transaction_handle;

 original_start_addr = start_addr;

 stream_handle = create_transaction_stream("ctestprogram", "kind");

 transaction_handle = begin_transaction(stream_handle, "ctestprogram", 0, -1);

 // Repeat 10 times, changing the data

 for (dataloops = 0; dataloops < 10; dataloops++) {

 // Repeat 10 times - writing 10, and reading 10

 start_addr = original_start_addr;

 for (loops = 0; loops < 10; loops++) {

 printf("C: ...entering start_test_program1 (%0d...) <%s>\n", index, name);

 for (addr = start_addr; addr < start_addr+10; addr++) {

 data = addr + 1000 + dataloops;

 write_transaction_handle = begin_transaction(stream_handle, "cwrite",

 0, transaction_handle);

 write(index, addr, data);

 add_attribute_int(write_transaction_handle, addr, "addr");

 add_attribute_int(write_transaction_handle, data, "data");

 end_transaction(write_transaction_handle);

9

 free_transaction(write_transaction_handle);

 printf("C: ...executed WRITE(%0d, %0d) <%s>\n", addr, data, name);

 }

 for (addr = start_addr; addr < start_addr+10; addr++) {

 read_transaction_handle = begin_transaction(stream_handle, "cread",

 0, transaction_handle);

 read(index, addr, &data);

 add_attribute_int(read_transaction_handle, addr, "addr");

 add_attribute_int(read_transaction_handle, data, "data");

 end_transaction(read_transaction_handle);

 free_transaction(read_transaction_handle);

 printf("C: ...executed READ (%0d, %0d) <%s>\n", addr, data, name);

 if (data != addr + 1000 + dataloops) {

 printf("C: ...ERROR READ (%0d, %0d) <%s> [wrote: %d, read %d] \n",

 addr, data, name, data, addr + 1000 + dataloops);

 }

 }

 start_addr += 10;

 }

 }

 end_transaction(transaction_handle);

VIII. TRANSACTION RECORDING FOR REGISTERS

Registers are bit vectors with special addresses or special characteristics. The REG_monitor below is very simple – it

accepts a register value ‘r’ and a register name. Anytime ‘r’ changes, it logs a transactions. But this is perhaps too simple. It

only logs write transactions.

module REG_monitor(input reg [3:0] r, string register_name);

 int stream;

 int tr;

 initial begin

 stream = $create_transaction_stream("reg_stream", "kind");

 end

 always @(r) begin

 bit [3:0] reg_value;

 reg_value = r;

 tr = $begin_transaction(stream, "REG_tr");

 $add_attribute(tr, register_name, "NAME");

 $add_attribute(tr, reg_value, "value");

 #5;

 $end_transaction(tr);

 $free_transaction(tr);

 end

endmodule

10

This simple monitor is bound into the memory.

module bind_module_register();

 bind memory REG_monitor reg_monitor_instanceA(regA, "regA");

 bind memory REG_monitor reg_monitor_instanceB(regB, "regB");

 bind memory REG_monitor reg_monitor_instanceC(regC, "regC");

endmodule

IX. TRANSACTION RECORDING FOR MEMORIES

As the monitor is extended to memories, the monitor is enhanced to be much smarter, and mimic the actual protocol.

This monitor is monitoring all the communication on the wires – on the bus. It will record register reads and writes, as well

as memory reads and writes.

module memory_register_monitor(input clk, input valid, input ready, input rw,

 input bit [3:0] addr, input [3:0] wdata, input [3:0] rdata);

 rw_t rw_as_enum;

 reg [3:0] data;

 string rw_name;

 string name;

 int stream;

 int tr;

 initial begin

 stream = $create_transaction_stream("memory_register_stream", "kind");

 end

 always @(posedge clk) begin

 rw_as_enum = rw_t'(rw);

 if ((ready == 1) && (valid ==1)) begin

 tr = $begin_transaction(stream, "register");

 case (rw)

 READ: begin

 rw_name = "READ";

 data = rdata;

 case (addr)

 REGA: name = "regA";

 REGB: name = "regB";

 REGC: name = "regC";

 default: name = "MEM";

 endcase

 end

 WRITE: begin

 rw_name = "WRITE";

 data = wdata;

 case (addr)

 REGA: name = "regA";

 REGB: name = "regB";

 REGC: name = "regC";

 default: name = "MEM";

 endcase

 end

 endcase

 $add_attribute(tr, rw_name, "RW");

 $add_attribute(tr, name, "reg_or_mem");

 $add_attribute(tr, addr, "addr");

 $add_attribute(tr, data, "data");

 @(negedge clk);

 $end_transaction(tr);

11

 $free_transaction(tr);

 end

 end

endmodule

This memory_register monitor was instantiated directly in the memory. It could have been bound in, or connected to

wires or implemented in an interface. In fact any of the monitors discussed above could have any or these implementation

variations.

X. CONCLUSION

The reader of this paper has the background and examples to support their own development of transaction recording

and correlation at many abstraction levels. The example is open source, available from the author, and the concepts apply to

any of the simulation suppliers, while the details vary slightly.

Using transactions in a verification environment and being able to correlate the results from any abstraction level will

allow better verification and increased productivity. Transactions can be used to improve visibility and transparency in a

large, complex functional verification environment. The reader will understand how to adapt the concepts and techniques

from this paper to their verification environment.

XI. REFERENCES

[1] DVCON Japan 2024, “Having Your Cake and Eating It Too - Programming UVM Sequences with DPI-C”, Rich

Edelman, [Contact author for a copy]

[2] DVCON US 2013, “Monitors, Monitors Everywhere – Who is Monitoring the Monitors? SystemVerilog UVM Monitors

and Scoreboards”, Rich Edelman, Raghu Ardeishar

[3] Questa Example – vhdl/transactions/simple, Questa 2025.2

https://dvcon-proceedings.org/wp-content/uploads/monitors-monitors-everywhere-who-is-monitoring-the-monitors.pdf
https://dvcon-proceedings.org/wp-content/uploads/monitors-monitors-everywhere-who-is-monitoring-the-monitors.pdf

