Verification Academy

Search form

My Account Menu

  • Register
  • Log In
  • Topics
  • Courses
  • Forums
  • Patterns Library
  • Cookbooks
  • Events
  • More
  • All Topics
    The Verification Academy offers users multiple entry points to find the information they need. One of these entry points is through Topic collections. These topics are industry standards that all design and verification engineers should recognize. While we continue to add new topics, users are encourage to further refine collection information to meet their specific interests.
    • Languages & Standards

      • Portable Test and Stimulus
      • Functional Safety
      • Design & Verification Languages
    • Methodologies

      • UVM - Universal Verification Methodology
      • UVM Framework
      • UVM Connect
      • FPGA Verification
      • Coverage
    • Techniques & Tools

      • Verification IP
      • Simulation-Based Techniques
      • Planning, Measurement, and Analysis
      • Formal-Based Techniques
      • Debug
      • Clock-Domain Crossing
      • Acceleration
  • All Courses
    The Verification Academy is organized into a collection of free online courses, focusing on various key aspects of advanced functional verification. Each course consists of multiple sessions—allowing the participant to pick and choose specific topics of interest, as well as revisit any specific topics for future reference. After completing a specific course, the participant should be armed with enough knowledge to then understand the necessary steps required for maturing their own organization’s skills and infrastructure on the specific topic of interest. The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization’s processes so that you can then reap the benefits that advanced functional verification offers.
    • Universal Verification Methodology (UVM)

      • Advanced UVM
      • Basic UVM
      • Introduction to UVM
      • UVM Connect
      • UVM Debug
      • UVMF - One Bite at a Time
    • Featured Courses

      • Introduction to ISO 26262
      • Introduction to DO-254
      • Clock-Domain Crossing Verification
      • Portable Stimulus Basics
      • Power Aware CDC Verification
      • Power Aware Verification
      • SystemVerilog OOP for UVM Verification
    • Additional Courses

      • Assertion-Based Verification
      • An Introduction to Unit Testing with SVUnit
      • Evolving FPGA Verification Capabilities
      • Metrics in SoC Verification
      • SystemVerilog Testbench Acceleration
      • Testbench Co-Emulation: SystemC & TLM-2.0
      • Verification Planning and Management
      • VHDL-2008 Why It Matters
    • Formal-Based Techniques

      • Formal Assertion-Based Verification
      • Formal-Based Technology: Automatic Formal Solutions
      • Formal Coverage
      • Getting Started with Formal-Based Technology
      • Handling Inconclusive Assertions in Formal Verification
      • Sequential Logic Equivalence Checking
    • Analog/Mixed Signal

      • AMS Design Configuration Schemes
      • Improve AMS Verification Performance
      • Improve AMS Verification Quality
  • All Forum Topics
    The Verification Community is eager to answer your UVM, SystemVerilog and Coverage related questions. We encourage you to take an active role in the Forums by answering and commenting to any questions that you are able to.
    • UVM Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • UVM Forum
    • SystemVerilog Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • SystemVerilog Forum
    • Coverage Forum

      • Active Questions
      • Solutions
      • Replies
      • No Replies
      • Search
      • Coverage Forum
    • Additional Forums

      • Announcements
      • Downloads
      • OVM Forum
  • Patterns Library
    The Verification Academy Patterns Library contains a collection of solutions to many of today's verification problems. The patterns contained in the library span across the entire domain of verification (i.e., from specification to methodology to implementation—and across multiple verification engines such as formal, simulation, and emulation).
    • Implementation Patterns

      • Environment Patterns
      • Stimulus Patterns
      • Analysis Patterns
      • All Implementation Patterns
    • Specification Patterns

      • Occurrence Property Patterns
      • Order Property Patterns
      • All Specification Patterns
    • Pattern Resources

      • Start Here - Patterns Library Overview
      • Whitepaper - Taking Reuse to the Next Level
      • Verification Horizons - The Verification Academy Patterns Library
      • Contribute a Pattern to the Library
  • All Cookbooks
    Find all the methodology you need in this comprehensive and vast collection. The UVM and Coverage Cookbooks contain dozens of informative, executable articles covering all aspects of UVM and Coverage.
    • UVM Cookbook

      • UVM Basics
      • Testbench Architecture
      • DUT-Testbench Connections
      • Configuring a Test Environment
      • Analysis Components & Techniques
      • End Of Test Mechanisms
      • Sequences
      • The UVM Messaging System
      • Other Stimulus Techniques
      • Register Abstraction Layer
      • Testbench Acceleration through Co-Emulation
      • Debug of SV and UVM
      • UVM Connect - SV-SystemC interoperability
      • UVM Versions and Compatibility
      • UVM Cookbook
    • Coding Guidelines & Deployment

      • Code Examples
      • UVM Verification Component
      • Package/Organization
      • Questa/Compiling UVM
      • SystemVerilog Guidelines
      • SystemVerilog Performance Guidelines
      • UVM Guidelines
      • UVM Performance Guidelines
    • Coverage Cookbook

      • Introduction
      • What is Coverage?
      • Kinds of Coverage
      • Specification to Testplan
      • Testplan to Functional Coverage
      • Bus Protocol Coverage
      • Block Level Coverage
      • Datapath Coverage
      • SoC Coverage Example
      • Requirements Writing Guidelines
      • Coverage Cookbook
  • All Events
    No one argues that the challenges of verification are growing exponentially. What is needed to meet these challenges are tools, methodologies and processes that can help you transform your verification environment. These recorded seminars from Verification Academy trainers and users provide examples for adoption of new technologies and how to evolve your verification process.
    • Upcoming & Featured Events

      • Creating an Optimal Safety Architecture  - February 9th
      • The ABC of Formal Verification - February 11th
      • Events Calendar
    • On Demand Seminars

      • I'm Excited About Formal...
      • Visualizer Coverage
      • Formal-based ‘X’ Verification
      • 2020 Functional Verification Study
      • All On-Demand Seminars
    • Recording Archive

      • Improving Your SystemVerilog & UVM Skills
      • Should I Kill My Formal Run?
      • Visualizer Debug Environment
      • All Recordings
    • Mentor Training Center

      • SystemVerilog for Verification
      • SystemVerilog UVM
      • UVM Framework
      • Instructor-led Training
    • Mentor Learning Center

      • SystemVerilog Fundamentals
      • SystemVerilog UVM
      • Questa Simulation Coverage Acceleration Apps with inFact
      • View all Learning Paths
  • About Verification Academy
    The Verification Academy will provide you with a unique opportunity to develop an understanding of how to mature your organization's processes so that you can then reap the benefits that advanced functional verification offers.
    • Blog & News

      • Verification Horizons Blog
      • Academy News
      • Academy Newsletter
      • Technical Resources
    • Verification Horizons Publication

      • Verification Horizons - November 2020
      • Verification Horizons - July 2020
      • Verification Horizons - March 2020
      • Issue Archive
    • About Us

      • Verification Academy Overview
      • Subject Matter Experts
      • Contact Us
    • Training

      • Questa® & ModelSim®
      • Questa® inFact
      • Functional Verification Library
Ask a Question
UVM
  • Home /
  • Forums /
  • UVM /
  • All uvm_components extended from uvm_object at the end in the uvm_hierarchy , then how uvm_object is different from uvm_component ?

All uvm_components extended from uvm_object at the end in the uvm_hierarchy , then how uvm_object is different from uvm_component ?

UVM 5532
uvm_component hierarchy 2 uvm_component 8 uvm_object 8 #uvm 236
pk_94
pk_94
Full Access
74 posts
October 22, 2018 at 12:06 am

As we know uvm_components are static in nature and are build during build phase while uvm_object (like uvm_trasaction) are non static ,meaning they can be changed during run time.One more thing is that factory creation is not possible in uvm_object unlike uvm_component. But the question is all the uvm_components are derived from uvm_object in the uvm hierarchy ,so how its possible in anyway , or am I missing something ? Is the uvm_object mentioned in the uvm hierarchy is misnomer. Please explain.

Replies

Log In to Reply
chr_sue
chr_sue
Full Access
3232 posts
October 22, 2018 at 12:30 am

In reply to pk_94:

See in the UVM Reference Manual.

class uvm_component extends uvm_report_object;
class uvm_report_object extends uvm_object;

In general for uvm_component reporting capbilities are added to the uvm_object class.

pk_94
pk_94
Full Access
74 posts
October 22, 2018 at 12:55 am

In reply to chr_sue:

Thats true, but uvm_component is a child and uvm_object is a parent ), then how can we say that uvm_component being a child is static in nature while the uvm_object being the parent is dynamic in nature ,it is possible ?

Solution

Solution

dave_59
dave_59
Forum Moderator
8466 posts
October 22, 2018 at 10:01 am

In reply to pk_94:
People sometime use the word "static" to mean an object that gets created at time 0 and exists for the entire simulation. It is not "static" in the official SystemVerilog keyword sense. I prefer to use the term "structural" or "topological" for uvm_component objects rather than confuse people with "static"
The factory can be used by any class derived from uvm_object.

Also, uvm_object is a base class, not a parent class of uvm_component. Do not use the terms parent/child when dealing with inheritance. You always construct just one object, and that object inherits all the properties down to the base class.

— Dave Rich, Verification Architect, Siemens EDA

pk_94
pk_94
Full Access
74 posts
October 23, 2018 at 12:46 am

In reply to dave_59:

Thanks for the clarification Dave.Just one more thing is ,why parent/child is not preferred when dealing with inheritance ? Is there any issue in using that terminology ?

dave_59
dave_59
Forum Moderator
8466 posts
October 23, 2018 at 7:18 am

In reply to pk_94:
Parents create(construct) children and they are distinct objects from their parents. When you inherit property, that property becomes yours and all your property belongs to one object. Use base and extended.

The UVM uses terms parent and child to refer to relationships between objects when building a hierarchical tree/graph structure. The class uvm_component has a handle to its parent and handles to all its children so that you can traverse the hierarchical structure. This terminology is used in most programming languages and is independent of OOP.

— Dave Rich, Verification Architect, Siemens EDA

© Mentor, a Siemens Business, All rights reserved www.mentor.com

Footer Menu

  • Sitemap
  • Terms & Conditions
  • Verification Horizons Blog
  • LinkedIn Group
SiteLock