
	

	

	

	

	

MASTERING	REACTIVE	SLAVES	IN	UVM	

	
	

Mark	Litterick,	Jeff	Montesano	
	
	

Verilab	
Munich	(Germany),	Austin	(USA)	

	
www.verilab.com	

	
	
ABSTRACT	
In	most	interface	protocols	a	component	can	either	be	a	master,	which	initiates	the	transactions	or	a	
slave,	which	responds	to	these	transactions.	Generating	constrained-random	request	transactions	in	a	
proactive	master	agent	using	sequences	is	fairly	straightforward	in	the	UVM;	however,	implementing	
a	 reactive	 slave	 is	 much	 more	 complicated,	 especially	 for	 relatively	 inexperienced	 users.	 The	
implementation	can	be	further	complicated	if	the	slave	has	a	storage	component	or	we	are	required	to	
synchronize	high-level	scenarios	with	slave	traffic.		

This	 paper	 outlines	 the	 roles	 and	 responsibilities	 of	 a	 reactive	 slave	 and	proactive	master	 and	 then	
explores	different	architectures	 for	reactive	slave	 implementation,	highlighting	their	suitability	 for	a	
protocol	depending	on	the	decoding	of	the	transactions	in	the	monitor.	
All	 aspects	 of	 reactive	 slave	 operation	 are	 illustrated	 with	 code	 examples,	 including	 architecture,	
sequence	items,	forever	sequences,	TLM	interconnection,	storage	API	and	synchronization	agents.	
	 	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	2	 Mastering	Reactive	Slaves	in	UVM	

Table	of	Contents	
MASTERING	REACTIVE	SLAVES	IN	UVM	...	1	
1.	Introduction	...	3	

2.	Proactive	Masters	and	Reactive	Slaves	..	3	
2.1	Proactive	Master	Architecture	...	5	
2.2	Reactive	Slave	Architecture	..	6	

2.3	Alternative	Slave	Architecture	...	7	
2.4	BFM	Implementation	...	9	

3.	Reactive	Slave	Operation	...	9	
3.1	Sequence	..	10	

3.2	Monitor	...	10	
3.3	Sequencer	..	11	
3.4	Driver	...	12	

3.5	Agent	..	12	
3.6	Test	Environment	...	13	

4.	Additional	Features	...	14	
4.1	Reactive	Slave	With	Memory/Storage	..	14	
4.2	Reactive	Slave	With	Control	Agent	...	16	

4.3	Error	Injection	In	Slave	Responses	...	19	
4.4	Bus	Topology	Considerations	...	21	

5.	Conclusions	...	22	
6.	References	...	22	
	
	 	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	3	 Mastering	Reactive	Slaves	in	UVM	

1.	Introduction	
In	most	 interface	 protocols	 a	 component	 can	 be	 classified	 as	 either	 a	master,	which	 initiates	 the	
transactions	on	the	bus,	or	a	slave,	which	responds	to	these	transactions.	From	a	verification	point	
of	view,	a	reactive	slave	is	an	agent	that	drives	response	signals	only	when	a	transfer	is	initiated	on	
its	interface	by	the	Device	Under	Test	(DUT)	master.	It	is	an	active	component	as	it	affects	the	state	
and	 flow	of	 the	 simulation	by	driving	 signals	 on	 the	 interface	 to	 specific	 values	 at	 specific	 times.	
Such	reactive	slaves	are	sometimes	referred	to	as	“responders”.	

Generating	constrained-random	request	transactions	in	a	proactive	master	agent	using	sequences	
is	 fairly	 straightforward	 in	 the	 Universal	 Verification	 Methodology	 (UVM)	 [1];	 however,	
implementing	 a	 reactive	 slave	 is	much	more	 complicated,	 especially	 for	 relatively	 inexperienced	
users.	 This	 is	 primarily	 because	 the	 slave	 sequence	 needs	 to	 autonomously	 generate	 sequence	
items	on-demand	depending	 on	 the	 requests	 from	 the	DUT	which	 are	 observed	 at	 unpredictable	
times.		The	implementation	can	be	further	complicated	if	the	slave	has	a	storage	component	or	we	
are	required	to	synchronize	high-level	scenarios	with	slave	traffic.	

This	paper	outlines	the	roles	and	responsibilities	of	a	reactive	slave	and	proactive	master	and	then	
explores	 different	 architectures	 for	 reactive	 slave	 implementation.	 All	 aspects	 of	 reactive	 slave	
operation	 are	 illustrated	 by	 code	 examples;	 including	 architecture,	 sequence	 items,	 forever	
sequences,	TLM	interconnection,	and	use	cases	for	tests.	In	addition	we	also	demonstrate	how	and	
where	to	connect	storage	while	providing	the	user	with	a	flexible	API	to	prefill,	validate	or	interfere	
with	 the	 storage.	 Synchronization	 requirements	 for	 higher-level	 scenario	 sequences	 that	 need	 to	
wait	 on	 slave	 transactions	 from	 the	DUT	 are	 also	 discussed	 and	 a	 flexible	 solution	 using	 control	
agents	is	provided	.	Lastly,	we	touch	upon	the	topic	of	error	injection	as	it	relates	to	reactive	slave	
implementation.	

This	version	of	the	paper	has	additional	text,	clarifications	and	code	fixes	compared	to	[4].	

2.	Proactive	Masters	and	Reactive	Slaves	
Most	interface	protocols	can	be	decomposed	into	master	and	slave	roles,	where	the	master	initiates	
a	transaction	on	the	interface	and	the	slave	responds	to	it.	 In	a	verification	component	(UVC),	the	
classification	of	the	role	depends	on	the	associated	behavior	of	the	DUT	on	the	interface:		

• UVC	master	initiates	transactions	for	a	DUT	slave		
• DUT	master	initiates	transactions	for	a	UVC	slave		

From	a	testbench	point	of	view,	if	the	slave	agent	drives	any	signals	whatsoever	into	the	DUT	(e.g.	
ready,	 clear-to-send,	 data,	 response,	 error,	 etc.),	 then	 the	 slave’s	 role	 is	 considered	 active.	 The	
master	agent	is	of	course	responsible	for	initiating	traffic	to	the	DUT	and	is	always	performing	an	
active	role.	In	practice	most	slave	protocols	are	active	(in	that	the	slave	drives	signals	back	to	the	
master),	with	a	few	notable	exceptions	being	a	display	interface,	or	other	write-only	interfaces	that	
have	no	feedback	at	all.		

It	 is	 important	 to	 avoid	 confusing	 the	 master	 and	 slave	 roles	 on	 an	 interface	 protocol	 with	 the	
active/passive	mode	of	operation	of	a	verification	component.	A	verification	component	operating	
in	active	mode	drives	signals	 to	the	DUT	or	otherwise	affects	 the	stimulus,	whereas	a	verification	
component	operating	in	passive	mode	only	observes	DUT	behavior	without	affecting	signal	values	
or	 timing.	Hence	 if	we	observe	 traffic	on	an	 internal	 interface	of	 the	DUT	 (where	 the	master	and	
slave	 roles	 are	 both	 performed	 by	 RTL	 components)	 then	 we	 typically	 connect	 a	 verification	
component	 configured	 for	 passive	 operation;	 this	 passive	 agent	 could	be	 connected	 to	 either	 the	
master	or	the	slave	end	of	the	internal	interface	protocol	(or	indeed	multiple	passive	agents	could	
be	used	and	connected	to	all	endpoints).		

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	4	 Mastering	Reactive	Slaves	in	UVM	

This	 distinction	between	 active	 and	passive	modes	 of	 operation	 in	 combination	with	master	 and	
slave	roles	 is	 illustrated	 in	Figure	1.	 It	shows	an	environment	with	 three	different	protocol	UVCs,	
two	 of	 which	 (A	 and	 C)	 perform	 active	 roles	 (master	 and	 slave	 respectively)	 on	 external	 DUT	
interfaces,	and	one	of	which	(B)	performs	passive	monitoring	of	an	internal	protocol	interface.	

	
Figure	1 Active/Passive	Operation	of	Master/Slave	Agents	

The	 responsibilities	 of	 the	master	 and	 slave	 verification	 components	 can	 be	 further	 clarified	 by	
considering	the	stimulus	 flow.	To	generate	traffic	via	 the	active	master,	 the	test	must	 take	charge	
and	 execute	 sequences	 as	 required,	whenever	 it	wants,	 in	 order	 to	 create	 interesting	 scenarios	 -	
this	is	proactive	behavior.	However,	when	the	DUT	assumes	the	role	of	master	and	the	verification	
component	is	the	slave,	then	we	need	to	generate	responses	on-demand	based	on	requests	coming	
out	of	the	DUT,	whenever	the	DUT	generates	them	-	this	is	reactive	behavior.		

Note	that	although	the	DUT	in	a	verification	environment	is	provoked	into	generating	the	requests	
on	the	master	interface	output	ports,	it	is	often	not	possible	to	predict	the	timing	of	this	traffic	(for	
example	where	 the	DUT	executes	 internal	microcode	on	an	embedded	processing	element	which	
results	 in	some	subsequent	 traffic	at	some	unpredictable	 time	based	on	system	state	and	current	
firmware	version).	Hence	the	slave	needs	to	operate	in	an	autonomous	fashion	and	provide	these	
responses	when	required	without	blocking	the	main	stimulus	flow	for	the	test.		

Verification	 components	 in	 a	 modern	 constrained-random	 setting	 can	 normally	 therefore	 be	
described	as:		

• proactive	master	which	initiates	traffic	to	the	DUT	using	sequence-based	stimulus		
• reactive	slave	which	responds	to	traffic	from	the	DUT	using	sequence-based	stimulus		

In	 fact	 there	 are	 a	 few	 more	 variations	 than	 those	 listed	 above,	 but	 they	 are	 generally	 not	
appropriate.	For	example	we	could	have	an	active	slave	 that	generates	stimulus	 responses	which	
have	 no	 relationship	 whatsoever	 to	 the	 traffic	 initiated	 by	 the	 DUT	 master	 (an	 ignorant	 active	
slave!)	 -	 but	 this	 would	 seriously	 compromise	 the	 ability	 to	 control	 stimulus	 and	 achieve	
meaningful	scenarios	for	the	verification	requirements.	Likewise	we	can	also	have	a	non-sequence	
based	 Bus-Functional	 Model	 (BFM)	 implementation	 whereby	 the	 response	 is	 automatic	 and	 not	
under	 the	 control	 of	 sequence-based	 constrained-random	 stimulus	 -	 this	 might	 be	 OK	 for	 very	
trivial	slaves	with	only	one	response,	but	in	general	is	strongly	discouraged	(refer	to	the	section	on	
BFM	Implementation	for	more	details).		A	sequence-based	stimulus	approach	for	reactive	slaves	is	
the	 most	 effective	 way	 to	 satisfy	 any	 non-trivial	 set	 of	 verification	 requirements.	 	 It	 allows	 the	
engineer	to	describe	response	sequence	items	along	with	constraints,	and	then	leverage	the	power	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	5	 Mastering	Reactive	Slaves	in	UVM	

of	randomization	to	achieve	coverage	closure.	

The	basic	 behavior	 and	 stimulus	 flow	 for	 a	 proactive	master	 verification	 component	 is	 shown	 in		
Figure	 2.	 In	 this	 case	 the	 stimulus	 is	 explicitly	 initiated	 by	 the	 test	 sequences	 (1),	 resulting	 in	 a	
request	 being	 sent	 to	 the	DUT	 from	 the	 proactive	master	 agent	 (2),	 and	 the	DUT	 generating	 the	
response	in	accordance	with	the	protocol	(3).		

	
Figure	2 Proactive	Behavior	

The	basic	behavior	and	stimulus	flow	for	a	reactive	slave	verification	component	is	shown	in		Figure	
3.	In	this	case	the	DUT	is	provoked	into	generating	a	request	as	a	result	of	some	remote	stimulus	or	
implicit	behavior	(1),	the	DUT	generates	the	actual	request	whenever	it	wants	(2),	and	the	reactive	
slave	 agent	 generates	 a	 corresponding	 response	 in	 accordance	with	 the	protocol	 and	verification	
requirements	(3).	

	
Figure	3 Reactive	Behavior	

2.1	Proactive	Master	Architecture	
The	most	common	type	of	verification	component	is	the	proactive	master	(where	the	user	instructs	
the	UVC	to	generate	traffic	for	the	DUT	by	executing	one	or	more	sequences	in	the	context	of	a	test	
scenario).	The	sequence	 flow	 is	under	 the	control	of	 the	user	 (via	 the	 test)	but	of	course	we	may	
allow	 a	 varying	 degree	 of	 constraints	 to	 be	 placed	 upon	 the	 stimulus	 generation	 (configuration,	
sequences,	 scenarios).	The	basic	UVM	architecture	 for	a	proactive	master	component	 is	shown	 in	
Figure	4.	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	6	 Mastering	Reactive	Slaves	in	UVM	

	
Figure	4 Proactive	Master	Architecture	

(Actually	 this	 is	 the	 same	 architecture	 for	 all	 modern	 HVL-based	 constrained-random	 testbench	
languages,	only	the	terminology	changes.)	

The	 key	 thing	 to	 bear	 in	 mind	 is	 that	 the	 structure	 supports	 all	 of	 what	 we	 want	 to	 do,	 uses	
sequence-based	stimulus	(as	opposed	to	methods),	and	the	test	environment	controls	the	stimulus	
flow	 and	 sequence	 order	 (allowing	 of	 course	 for	 randomization	 of	 content	 and	 permutations)	
rather	than	the	DUT.	So	the	sequences	are	started	on	the	sequencer,	sequence	items	are	passed	to	
the	driver,	time	is	consumed	by	the	driver	as	it	converts	the	sequence	item	to	signal	stimulus,	once	
the	item	completes	control	is	passed	back	to	the	sequencer,	and	then	new	sequences	are	started	on	
demand.	The	DUT	can	of	 course	 influence	 the	 response	 timing,	provide	 ready	 signals	or	 clear-to-
send	flow	control,	and	the	UVC’s	driver	must	react	to	these	correctly.	

2.2	Reactive	Slave	Architecture		
When	 the	 DUT	 is	 master	 of	 an	 interface	 and	 the	 UVC	 has	 to	 generate	 responses	 based	 on	 the	
observed	 requests,	 then	 the	UVC	behaves	 as	 a	 reactive	 slave.	 Typically	 the	 response	 information	
and	 flow	control	 signals	 are	 required	 to	be	 related	 to	 the	 requests	provided	by	 the	DUT	 (e.g.	 for	
functional	 reasons	 such	 as	 when	 data	 belongs	 to	 a	 request	 tag	 or	 address,	 or	 for	 verification	
requirements	 such	 as	we	want	 to	 generate	 an	 error	 response	 on	 a	 particular	 address	 or	 type	 of	
transfer).	 The	 basic	 UVM	 architecture	 for	 sequence-based	 constrained-random	 stimulus	 for	 a	
reactive	slave	is	shown	in	Figure	5.	

	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	7	 Mastering	Reactive	Slaves	in	UVM	

	
Figure	5 Reactive	Slave	Architecture	

Note	 that	 the	 architecture	 is	 not	 so	 different	 from	 the	 proactive	 master	 (e.g.	 each	 agent	 has	 an	
active	 sequencer	 and	 driver,	 as	well	 as	 a	 passive	monitor,	 and	 the	 same	 agent	 and	 environment	
encapsulation).	In	this	case	there	is	additional	communication	from	the	monitor	to	the	sequencer	in	
order	to	generate	sequence	items	as	late	as	possible	in	reaction	to	requests	from	the	DUT	(i.e.	we	
need	to	communicate	the	request	information	to	a	sequence	for	sequence	item	generation)	via	the	
TLM	port	connection	and	a	TLM	FIFO	in	the	sequencer.	Note	that	the	FIFO	is	only	there	to	provide	
blocking	get	capability	for	the	TLM	analysis	port	connection	(it	is	not	storing	multiple	transactions).	
Also,	since	we	do	not	know	when	exactly	the	DUT	is	going	to	initiate	the	transaction	we	need	to	run	
a	 different	 kind	 of	 sequence.	 Operation	 of	 this	 architecture	 is	 described	 in	 detail	 in	 Section	 3.	 ;	
although	 the	 infrastructure	 has	 become	 slightly	 more	 complicated,	 the	 basic	 communication	
between	 the	 sequences	 and	 driver	 is	 very	 straightforward	 as	 shown	 in	 Figure	 6.	 Note	 that	 the	
driver	operation	is	identical	to	a	normal	proactive	master	driver	for	this	architecture.	

	
Figure	6 Reactive	Slave	Sequence-Driver	Interaction	

2.3	Alternative	Slave	Architecture	
Note	 that	 there	 is	 more	 than	 one	 possible	 architecture	 for	 implementing	 a	 reactive	 slave.	 For	
example	 [2]	describes	an	alternative	 implementation	whereby	 the	driver	decodes	 the	 request	 (in	
parallel	with	the	normal	monitor	operation)	and	communicates	two	times	with	the	sequencer	 for	
every	transaction	(once	to	send	the	observed	request,	and	once	to	get	the	generated	response).	The	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	8	 Mastering	Reactive	Slaves	in	UVM	

main	advantage	of	 this	 alternative	 setup	 is	 that	 the	architectural	 structure	 is	 simpler,	 in	 fact	 it	 is	
identical	to	a	normal	proactive	master	architecture,	as	shown	in	Figure	7.		

	
Figure	7 Alternative	Slave	Architecture	

In	 this	 case	 the	 interaction	 between	 sequences	 and	 the	 driver	 is	 however	more	 complicated,	 as	
shown	 in	Figure	8,	and	 the	decoding	 logic	 for	 the	request	has	 to	be	duplicated	 in	 the	driver	 (it	 is	
required	in	the	monitor	anyway).		

	
Figure	8 Alternative	Slave	Sequence-Driver	Interaction	

Although	 the	 infrastructure	 is	 slightly	 simpler	 in	 this	 case,	 the	 authors	 believe	 the	 additional	
complications	 introduced	 into	 the	 sequences	 and	 driver	 mean	 that	 this	 approach	 is	 less	 logical,	
more	 error-prone	 and	 harder	 to	 maintain.	 In	 addition,	 if	 there	 is	 any	 non-trivial	 decoding	 (e.g.	
number	of	start	bits	or	gap	time	for	a	serial	protocol),	or	complicated	decoding	(e.g.	8b10b	symbol	
decoding),	 or	 arbitration	 (e.g.	 multiple	 masters	 contending	 for	 signal	 state)	 associated	 with	 the	
protocol,	 then	 it	 does	 not	 make	 sense	 to	 duplicate	 this	 logic	 in	 both	 the	 driver	 and	 monitor	 -	
remember	 the	monitor	 always	 has	 to	 do	 the	 decoding	 in	 all	 these	 architectures	 in	 order	 for	 the	
verification	component	to	work	in	passive	mode.		

The	 remainder	 of	 the	 paper	 is	 based	 around	 the	 architecture	 described	 by	 Figure	 5,	 but	 could	
nonetheless	be	adapted	to	this	alterative	slave	architecture	by	the	reader	if	required.	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	9	 Mastering	Reactive	Slaves	in	UVM	

2.4	BFM	Implementation	
Beginners,	 verification	 engineers	 from	 an	 HDL	 background	 (i.e.	 experienced	 with	 testbenches	
written	in	VHDL	or	Verilog)	and	lazy	people	(sorry,	but	true)	are	often	tempted	to	implement	the	
reactive	 slave	 entirely	 in	 a	 reactive	 driver	 which	 performs	 the	 role	 of	 a	 Bus-Functional	 Model	
(BFM).	 In	 this	 case	 all	 the	 advantages	 of	 sequence-based	 constrained-random	 stimulus	 are	
discarded	in	favor	of	simple	RTL-like	behavior	(typically	controlled	via	a	configuration	method	API)	
as	shown	in	Figure	9.		

	
Figure	9 BFM	Implementation	

For	 trivial	 protocols	 this	 BFM	 solution	 might	 in	 fact	 be	 OK	 (e.g.	 where	 there	 is	 only	 ever	 one	
response,	no	wait	state	control,	etc.).	In	fact	it	might	also	be	OK	as	a	dramatic	temporary	shortcut,	
but	 it	 is	 seldom	 the	 best	 solution	 for	 achieving	 user	 control	 over	 all	 of	 the	 responses	 in	 a	
constrained-random	 manner	 since	 the	 user	 would	 have	 to	 interfere	 with	 the	 driver	 behavior	
instead	 of	 just	 providing	 new	 scenario-specific	 sequence	 combinations.	 We	 would	 recommend	
strongly	against	this	approach.	

3.	Reactive	Slave	Operation	
An	 overview	 of	 the	 sequence-driver	 interaction	 for	 the	 reactive	 slave	 architecture	 of	 Figure	 5	 is	
provided	by	Figure	6.	This	section	provides	a	more	detailed	explanation	and	UVM	code	examples	
for	all	aspects	of	slave	operation,	which	can	be	summarized	as:	

• the	sequencer	runs	a	"forever"	sequence	waiting	for	and	responding	to	requests	from	the	
DUT		

• the	monitor	passively	decodes	all	interface	traffic	but	publishes	transaction	requests	in	
addition	to	publishing	complete	transactions		

• the	sequencer	subscribes	to	the	published	requests	and	sequences	use	this	information	to	
generate	response	sequence	items		

• the	driver	converts	the	sequence	item	into	a	response	that	is	driven	on	the	bus	signals	in	
accordance	with	the	protocol	requirements	

	
Note	 that	 the	 code	 examples	 shown	 in	 the	 following	 sections	 assume	 that	 a	 base	 transaction	 is	
defined	 for	 the	 protocol,	 and	 that	 the	 sequence	 item	 extends	 this	 to	 add	 constraints	 and	 control	
variables	(our	preferred	style);	if	you	use	only	one	item	for	both	monitor	and	driver	then	adapt	the	
code	accordingly.		

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	10	 Mastering	Reactive	Slaves	in	UVM	

3.1	Sequence	
As	mentioned	previously,	 the	sequences	 for	 the	reactive	slave	contain	a	 forever	statement.	These	
sequences	 run	 forever	 in	 the	 allocated	 run-time	 phase	 and	 therefore	 they	 do	 not	 raise	 and	 drop	
objections.	An	example	forever	sequence	is	shown	below:	
class my_slave_response_seq extends uvm_sequence #(my_slave_seq_item);
 my_slave_seq_item m_item;
 my_transaction m_request;
 `uvm_object_utils (my_slave_response_seq)
 `uvm_declare_p_sequencer (my_slave_sequencer)
 function new(...)
 virtual task body();
 forever begin
 // wait for a transaction request (get is blocking)
 p_sequencer.request_fifo.get(m_request);
 // generate response based on observed request, e.g:
 case (m_request.m_direction)
 MY_DIRECTION_WRITE : begin
 `uvm_do_with(m_item,{
 m_item.m_resp_kind == MY_RESPONSE_ACK;
 })
 end
 MY_DIRECTION_READ : begin
 `uvm_do_with(m_item,{
 m_item.m_resp_kind == MY_RESPONSE_DATA;
 m_item.m_data == get_data(m_request.m_addr);
 })
 end
 endcase
 end
 endtask
endclass

Typically	not	many	sequences	are	required	to	support	all	the	slave	functionality,	but	the	user	will	
probably	have	to	provide	additional	sequences	to	do	very	specific	things	(for	example	generate	an	
error	response	on	the	Nth	access	to	a	specific	address).	As	a	starter	we	would	provide	something	
like	the	following	sequences	as	a	template	(actual	sequences	of	course	depend	on	protocol):		

• my_slave_base_seq		
• my_slave_response_seq	-	normal	response	sequence,	non-error	response	for	valid	requests,	

error	response	for	any	invalid	requests	
• my_slave_error_seq	-	generate	a	trickle	of	error	responses	even	for	valid	requests	(e.g.	

random	distribution	of	DUT	master	requests	terminated	with	an	error	response)		

Note:	many	slaves	have	to	model	storage	(typically	small	memories),	since	the	DUT	could	write	to	
the	 slave	 and	 then	 read	 back	 later.	 The	 normal	 responses	 would	 make	 use	 of	 this	 storage	
accordingly	as	shown	in	Section	4.	.	

3.2	Monitor	
The	monitor	 for	 a	 reactive	 slave	 agent	 has	 one	 additional	 responsibility	 compared	 to	 a	 standard	
monitor	-	this	is	to	publish	the	transaction	request	phase	information	in	a	timely	manner	so	that	the	
sequences	can	react	and	generate	an	appropriate	response.	This	can	either	be	done	by	publishing	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	11	 Mastering	Reactive	Slaves	in	UVM	

clearly	marked	 partial	 transactions	 on	 the	 existing	 analysis	 port	 (which	 requires	 all	 users	 of	 the	
analysis	 port	 to	 filter	 the	 transactions	 accordingly,	 and	 is	 therefore	 not	 recommended),	 or	 to	
provide	a	separate	port	for	publishing	requests	only	(recommended).		

It	is	recommended	that	the	monitor	publishes	the	requests	via	an	analysis	port	since	it	is	easier	to	
handle	passive	operation	of	the	UVC.	The	monitor	does	not	care	about	the	number	of	subscribers	or	
the	fact	that	one	of	them	is	a	sequencer	running	a	forever	sequence,	it	just	publishes	the	transaction	
request	 information	 (typically	 a	 partial	 transaction	 rather	 than	 a	 new	 transaction	 kind)	 on	 one	
analysis	 port	 when	 observed,	 and	 the	 full	 transaction	 on	 another	 analysis	 port	 at	 the	 end.	 Both	
analysis	 ports	 can	handle	 zero	 or	more	 observers	 -	 hence	 operation	 of	 the	UVC	 is	 ensured,	 even	
when	there	are	no	drivers	or	sequencers	in	circuit	(as	is	the	case	for	passive	operation).		
class my_slave_monitor extends uvm_monitor;
 ...
 virtual my_interface m_vif;
 my_transaction m_transaction;
 uvm_analysis_port #(my_transaction) transaction_aport; // full
 uvm_analysis_port #(my_transaction) request_aport; // partial
 ...
 function new(string name, uvm_component parent);
 super.new(name, parent);
 transaction_aport = new("transaction_aport", this);
 request_aport = new("request_aport", this);
 endfunction
 task run_phase();
 fork
 monitor_reset();
 monitor_bus();
 ...
 join
 endtask
 task monitor_bus();
 ...
 forever begin
 // decode bus signals in accordance with protocol
 ...
 request_aport.write(m_transaction); // publish request part
 ...
 // collect response
 transaction_aport.write(m_transaction); // publish full
 end
 endtask
 ...
endclass

Note,	 it	 is	 also	possible	 to	 connect	 the	monitor	 and	 sequencer	using	 a	blocking	put	 port,	 to	peek	
export.	In	this	case	the	monitor	must	not	construct	the	port	when	the	enclosing	agent	is	in	passive	
mode	 (since	 this	 port	 requires	 a	 one-to-one	 connection)	 and	 the	 agent	 must	 not	 attempt	 the	
connection	(note	the	sequencer	is	not	present	at	all	in	passive	mode).		

3.3	Sequencer	
The	main	difference	in	the	reactive-slave	sequencer	compared	to	a	normal	sequencer	is	that	it	has	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	12	 Mastering	Reactive	Slaves	in	UVM	

an	additional	TLM	analysis	 export	 that	 is	 connected	 to	 the	 request	 transactions	published	by	 the	
monitor.	 In	 addition	 there	 is	 a	 TLM	 FIFO	 which	 allows	 the	 sequences	 to	 stall	 while	 waiting	 for	
request	 transactions	 to	be	published	by	 the	monitor.	Note	 that	we	do	not	have	 to	 code	 the	write	
method	 for	 the	 analysis	 export	 since	 it	 is	 connected	 to	 a	 TLM	 FIFO.	 So	 the	 sequencer	 has	 the	
following	additional	code:		
class my_slave_sequencer extends uvm_sequencer #(my_slave_seq_item);
 ...
 uvm_analysis_export #(my_transaction) request_export;
 uvm_tlm_analysis_fifo #(my_transaction) request_fifo;
 ...
 function new(string name, uvm_component parent);
 super.new(name, parent);
 request_fifo = new("request_fifo", this);
 request_export = new("request_export", this);
 endfunction
 function void connect_phase(...);
 super.connect_phase(phase);
 request_export.connect(request_fifo.analysis_export);
 endfunction
endclass

3.4	Driver	
The	driver	is	identical	in	all	respects	to	a	normal	proactive	driver.	Specifically,	it	receives	sequence	
items	of	 the	appropriate	 type	 that	describe	all	aspects	of	 the	stimulus	 (field	values	and	metadata	
values	such	as	delays)	and	it	generates	a	response	in	accordance	with	the	protocol.		
class my_slave_driver extends uvm_driver #(my_slave_seq_item);
 my_slave_seq_item m_item;
 ...
 task run_phase(...);
 init();
 forever begin
 // Get the next response item from sequencer
 seq_item_port.get_next_item(m_item);
 // Drive the response onto the interface
 drive_item(m_item);
 // Consume the response item
 seq_item_port.item_done();
 end
 endtask
 task drive_item(input my_slave_seq_item item);
 // drive response signals to DUT in accordance with protocol
 // based on response item fields, e.g. sync to clock edge,
 // wait for delay, drive signal <= item field
 endtask
endclass

3.5	Agent	
The	 only	 additional	 responsibility	 in	 the	 agent	 is	 to	 connect	 the	 additional	 TLM	 analysis	 ports	
between	the	monitor	and	the	sequencer.		

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	13	 Mastering	Reactive	Slaves	in	UVM	

class my_slave_agent extends uvm_agent;
 uvm_analysis_port #(my_transaction) slave_aport; // full transaction
 ...
 function void connect_phase(...);
 super.connect_phase(phase);
 ...
 monitor.transaction_aport.connect(slave_aport);
 if (is_active == UVM_ACTIVE) begin
 driver.seq_item_port.connect(sequencer.seq_item_export);
 monitor.request_aport.connect(sequencer.request_export);
 ...
 end
 endfunction
endclass

3.6	Test	Environment	
Several	possibilities	exist	for	starting	the	required	slave	sequence,	but	the	most	generic	approach	is	
to	set	the	default_sequence	for	the	sequencer’s	main	run-time	phase	to	be	the	desired	default	slave	
operation.	 (Note	 that	 the	default_sequence	 for	 the	 sequencer	 has	 been	 deprecated	 in	UVM-1.2,	 so	
you	 should	 use	 the	 default_sequence	 in	 the	main_phase	 instead.)	 Setting	 the	 default_sequence	 is	
normally	 done	 using	 the	 config_db	 from	 the	 highest	 environment	 layer	 (i.e.	 the	 common	
environment	that	is	used	by	all	tests):		
class my_test_env extends uvm_env;
 ...
 my_uvc uvc_env;
 ...
 function void build_phase(...);
 super.build_phase(phase);
 ...
 uvm_config_db #(uvm_object_wrapper)::set(
 this,
 "uvc_env.slave_agent.sequencer.main_phase",
 "default_sequence",
 my_slave_response_seq::type_id::get());
 ...
 endfunction
endclass

This	 is	all	 that	 is	required	to	 initialize	the	reactive	slave	and	start	execution	of	 the	corresponding	
forever	sequence.	Whenever	the	DUT	initiates	a	request	on	the	master	port,	the	slave	sequence	will	
generate	a	sequence	item	for	the	driver	to	use	in	providing	a	corresponding	response.		

Alternatively	tests	can	start	explicit	sequences	for	the	slave	agents	directly	from	the	test	component	
(provided	the	default_sequence	for	the	main_phase	is	left	as	null	in	the	configured	environment)	as	
shown	below:	
class my_test expends uvm_test;
 `uvm_component_utils(my_test)
 my_test_env test_env;
 ...
 task run_phase(...);
 ...

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	14	 Mastering	Reactive	Slaves	in	UVM	

 fork
 slave_seq.start(test_env.uvc_env.slave_agent.sequencer);
 join_none
 ...
 // other stimulus
 ...
 endtask
endclass

Tests	 can	 of	 course	 select	 non-standard	 behaviour	 from	 the	 reactive	 slave	 by	 choosing	 an	
alternative	 sequence	 (and	 starting	 it	 directly	 or	 by	 overriding	 the	 config_db	 settings	 for	 the	
main_phase	default_sequence),	synchronising	to	slave	traffic,	interfering	with	storage	values	or	error	
injection	as	discussed	in	subsequent	sections.		

4.	Additional	Features	

4.1	Reactive	Slave	With	Memory/Storage	
Most	applications	require	that	 the	reactive	slave	models	some	kind	of	memory	or	storage.	This	 is	
required	 since	 the	 DUT	 master	 will	 probably	 expect	 values	 written	 out	 to	 be	 retained	 by	 the	
destination	 slave	 in	 the	 real	 application.	 The	 storage	 component	 can	 be	 added	 to	 the	 agent	 as	
shown	in	Figure	10.	

	
Figure	10 Reactive	Slave	With	Storage	

Figure	10	shows	a	slave	storage	component	(typically	a	small	or	sparse	memory	array)	that	can	be	
accessed	by	the	monitor	(for	debug,	even	in	passive	mode)	and	by	the	stimulus	via	the	sequencer	
(with	 a	 sequence	 or	 task-based	 API).	 Note	 that	 this	 slave	 memory	 is	 not	 part	 of	 the	 DUT	 and	
typically	not	part	of	the	corresponding	DUT	register	model	-	specifically	it	contains	persistent	data	
for	another	device	in	the	system	(the	target	slave)	and	is	therefore	modeled	in	isolation	in	order	to	
provide	realistic	stimulus	scenarios.	

The	storage	API	should	provide	the	ability	to	perform	the	following	operations:	
• 	Write	data	to	storage	
• 	Read	data	from	storage	
• 	Initialize	storage	content	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	15	 Mastering	Reactive	Slaves	in	UVM	

The	following	code	shows	a	possible	 implementation	of	the	storage	API,	which	is	provided	by	the	
storage	 component	 and	 accessible	 to	 any	 components	 or	 sequences	which	 have	 a	 handle	 to	 this	
class:	
class my_storage extends uvm_component;
 int mem[64];
 ...
 function void write(int addr, int value);
 mem[addr] = value;
 endfunction
 function int read(int addr);
 return(mem[addr]);
 endfunction
 function void init();
 bit [MY_DATA_WIDTH-1:0] rand_value;
 case (cfg.mem_init_type)
 MY_STORAGE_INIT_ZERO: begin
 for (int i = 0; i < size; i++) begin
 mem[i] = 0;
 end
 end
 MY_STORAGE_INIT_RANDOM: begin
 for (int i = 0; i < size; i++) begin
 void’(std::randomize(rand_value));
 mem[i] = rand_value;
 end
 end
 endcase
 endfunction
endclass	

Note	 that	 for	 illustrative	 purposes	 we	 have	 specified	 the	 memory	 as	 a	 small	 array.	 For	 larger	
address	spaces	a	sparse	memory	is	preferable	and	can	be	implemented	with	an	associative	array,		

The	 slave	 agent’s	monitor	 is	 responsible	 for	 initializing	 the	 storage	 component	 upon	 detecting	 a	
reset,	as	well	as	for	performing	writes	when	it	detects	the	DUT	performing	a	write	operation.	It	is	
important	 to	 note	 that	 these	 responsibilities	 are	 given	 to	 the	 monitor	 in	 order	 for	 the	 storage	
component	to	remain	updated	when	the	UVC	is	operating	in	passive	mode.	
class my_slave_monitor extends uvm_monitor;
 my_storage storage;
 ...
 task run_phase(...);
 ...
 fork
 forever begin
 // decode reset condition
 ...
 // reset condition detected
 storage.init();
 end
 forever begin
 // decode bus traffic
 ...

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	16	 Mastering	Reactive	Slaves	in	UVM	

 // write transaction (from DUT) detected
 storage.write(addr, data);
 ...
 end
 join
 endtask
endclass

The	forever	sequence	shown	earlier	(in	Section	3.		Sequence)	should	also	be	modified	to	read	data	
from	the	storage	component	whenever	it	is	required	for	a	read	response:	
class my_slave_response_seq extends my_slave_base_seq;
 ...
 virtual task body();
 forever begin
 // wait for a transaction request (get is blocking)
 p_sequencer.request_fifo.get(m_request);
 // generate response based on observed request, e.g:
 case (m_request.m_direction)
 ...
 MY_DIRECTION_READ : begin
 `uvm_do_with(m_item,{
 m_item.m_resp_kind == MY_RESPONSE_DATA;
 m_item.m_data ==
 p_sequencer.storage.read(m_request.m_addr);
 })
 end
 endcase
 end
 endtask
endclass

In	addition	to	the	standard	uses	of	the	storage	API	described	above,	a	test	can	choose	to	use	it	for	
operations	 like	 pre-filling	 the	memory	with	 data	 (e.g.	 based	 on	 the	 contents	 of	 an	 input	 file),	 or	
reading	the	memory	contents	out	to	a	file	for	post-processing:	
class my_test expends uvm_test;
 `uvm_component_utils(my_test)
 my_test_env test_env;
 ...
 task run_phase(...);
 ...
 meminit_seq.start(test_env.uvc_env.slave_agent.sequencer);
 ...
 // other stimulus
 ...
 memdump_seq.start(test_env.uvc_env.slave_agent.sequencer);
 endtask
endclass

4.2	Reactive	Slave	With	Control	Agent	
So	 far	 we	 have	 described	 how	 the	 reactive	 slave	 generates	 responses	 only,	 which	 is	 typically	
enough	for	block-level	environments.	For	practical	high-level	scenario	generation	in	the	presence	of	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	17	 Mastering	Reactive	Slaves	in	UVM	

reactive	 slaves,	 we	may	 need	 additional	 functionality	 to	 allow	 the	 test	 scenario	 stimulus	 to	 stall	
while	waiting	 for	 the	DUT	 to	 initiate	 a	 transaction	on	 the	 corresponding	 slave	 interface,	 perhaps	
with	a	mechanism	for	validating	any	traffic	on	that	interface	or	even	interfering	with	the	data	in	the	
reactive	slave	to	provoke	certain	verification	requirements	(e.g.	 if	 the	DUT	writes	a	value	out,	we	
modify	 it	 on	 the	 fly	 before	 the	 DUT	 reads	 it	 back	 again).	 For	 this	 reason	we	 typically	 add	more	
functionality	to	the	reactive	slave	environment	to	allow	for	operations	such	as:		

• wait	for	a	transaction	from	the	DUT		
• wait	for	a	specific	transaction	kind	and/or	field	value	from	the	DUT		
• wait	for	a	specific	transaction	kind	to	a	specific	address	from	the	DUT	

A	comprehensive	API	will	enable	the	user	to	implement	realistic	constrained-random	scenarios	to	
validate	 overall	 operation	 and	 specific	 behavior	 of	 the	DUT	with	 respect	 to	 the	 reactive	 slave.	 In	
order	 to	 support	 this	 level	 of	 stimulus	 control	 using	 sequence-based	 stimulus,	 the	 reactive	 slave	
environment	can	be	extended	to	perform	these	"tasks"	inside	a	sequence	API	by	adding	a	proactive	
scenario	control	agent	to	the	UVC	as	shown	in	Figure	11.	

	
Figure	11 Reactive	Slave	With	Control	Agent	

The	control	agent	driver	 is	split	 into	 two	parts.	The	 first	gets	sequence	 items	 from	the	sequencer	
which	tell	it	what	to	wait	for	(e.g.	any	transaction,	specific	commands)	and	sits	in	a	loop	waiting	for	
events	 and	 checking	 if	 the	 transaction	 content	matches	what	 is	 required.	 The	 second	part	 of	 the	
driver	 just	 monitors	 the	 transactions	 from	 the	 analysis	 export	 and	 generates	 events	 when	
transactions	 are	 observed.	 The	 corresponding	 user	 sequence	 library	 for	 the	 control	 agent	
sequencer	could	contain	sequences	of	the	following	type:		

• wait_transaction_seq	-	wait	for	transaction	from	the	DUT	(read/write/any)	
• wait_cmd_seq	-	wait	for	specific	command	(with	control	knobs	for	required	fields)		
• wait_addr_seq	-	wait	for	specific	address	(with	control	knobs	for	required	fields)	

We	have	used	this	architecture	in	a	number	of	different	UVCs	for	different	clients	and	the	flexibility	
and	capability	are	always	well	appreciated	by	the	testbench	architects	and	test	writers.	

For	the	sake	of	brevity	we	do	not	present	code	examples	of	the	sequence	item	and	sequences	that	
could	be	used	to	implement	such	a	control	agent;	there	is	nothing	novel	about	them,	just	standard	
UVM	sequence	items	and	sequences.		

One	possible	implementation	for	the	control	agent	shown	in	Figure	11	is	for	the	driver	to	subscribe	
to	 transactions	 published	 by	 the	 reactive	 slave	 agent’s	 monitor	 by	 connecting	 a	 UVM	 analysis	
export,	and	trigger	required	events	from	the	write	method	of	the	analysis	export	implementation.	
The	 driver	 can	 then	 have	 a	 forever	 loop	 that	 processes	 these	 events	 based	 on	 sequence	 item	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	18	 Mastering	Reactive	Slaves	in	UVM	

requirements	as	shown	below:	
class my_control_driver extends uvm_driver#(my_control_seq_item);
 ...
 uvm_analysis_export #(my_transaction) transaction_aexport;
 my_transaction m_slave_transaction;
 event write_detected;
 event read_detected;
 ...
 task run_phase(uvm_phase phase);
 ...
 forever begin
 seq_item_port.get_next_item(m_item);
 drive_item(m_item);
 seq_item_port.item_done();
 end
 endtask
 task drive_item(input my_control_seq_item item);
 case (item.m_wait)
 WAIT_TRANSACTION: begin
 case (item.m_direction)
 WRITE: @write_detected;
 READ: @read_detected;
 ANY: @(write_detected or read_detected);
 endcase
 end
 WAIT_ADDRESS: begin
 case (item.m_direction)
 WRITE: @(write_detected iff
 m_slave_transaction.m_addr == item.m_addr);
 READ: @(read_detected iff
 m_slave_transaction.m_addr == item.m_addr);
 ANY: @(write_detected iff
 m_slave_transaction.m_addr == item.m_addr,
 read_detected iff
 m_slave_transaction.m_addr == item.m_addr);
 endcase
 end
 endcase
 endtask
 function void write(my_transaction transaction);
 m_slave_transaction = my_transaction::type_id::create(...);
 m_slave_transaction.copy(transaction);
 case (transaction.m_direction)
 WRITE: ->write_detected;
 READ: ->read_detected;
 endcase
 endfunction
endclass

A	test	 component	or	sequence	can	make	use	of	a	 scenario	control	 sequence	 to	wait	 for	a	 specific	
event	to	occur,	check	the	memory	value,	possibly	choose	to	modify	the	value	written	to	storage	by	
the	DUT,	and	continue	the	test	from	there	as	shown	in	the	following	code	snippet:	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	19	 Mastering	Reactive	Slaves	in	UVM	

class my_test_seq extends uvm_sequence;
 my_control_wait_addr_seq wait_addr_seq;
 ...
 // wait for the DUT to write to address ‘h60
 `uvm_do_on_with(
 wait_addr_seq,
 test_env.uvc_env.control_agent.sequencer, {
 transaction == WRITE;
 addr == ‘h60;
 })
 // check the memory value provided by DUT
 m_data = test_env.uvc_env.slave_agent.storage.read(‘h60);
 if (m_data != `h1234)
 `uvm_error(...)
 // modify the memory value at address `h60
 test_env.uvc_env.slave_agent.storage.write(‘h60, ‘h0000);
 // continue with other stimuli
 ...
endclass

4.3	Error	Injection	In	Slave	Responses	
Error	injection	(i.e.	stimulus	sent	to	the	DUT	with	deliberate	errors	introduced)	for	reactive	slaves	
is	much	more	 complicated	 than	 it	 is	 for	proactive	masters	 since	 the	 test	 scenario	does	not	know	
when	the	DUT	will	initiate	the	transaction.	Note	that	simple	distributions	of	slave	response	errors	
(e.g.	 randomly	 distributing	 a	 proportion	 of	 requests	 with	 an	 error	 response)	 are	 trivial	 to	
implement	and	can	be	enabled	in	the	default	sequence	using	an	appropriate	distribution	constraint.	
However,	this	is	typically	not	enough	for	higher-level	test	scenario	generation,	where	for	example	
we	might	want	to	inject	an	error	on	the	first	or	last	transfer	in	a	burst,	or	on	specific	addresses.		

One	possible	solution	to	accomplish	this	level	of	control	from	high-level	test	scenarios	is	explained	
in	detail	in	[3]	and	summarized	here.	Counters	are	used	to	hold	requests	for	error	injection	events	
and	these	are	used	by	the	sequences	to	provide	the	error	responses	on-demand	whenever	the	DUT	
initiates	a	 transaction	request.	These	error	 injection	counters	 (one	 for	each	 type	of	error)	can	be	
conveniently	 stored	 in	 the	 configuration	 object	 of	 the	 UVC	 and	 modified	 via	 the	 control	 agent	
sequences	as	shown	in	the	following	code	examples:	
class my_slave_cfg extends uvm_object;
 int m_crc_error_count;
 int m_latency_error_count;
 ...
endclass

To	 allow	 testcase	 writers	 to	 increment	 the	 error	 injection	 counters,	 a	 sequence	 is	 added	 to	 the	
control	agent	for	the	UVC,	with	control	knobs	for	each	error	type:	
class my_control_increment_error_seq extends uvm_sequence;
 ...
 rand bit increment_crc_error;
 constraint default_crc_error_c {soft increment_crc_error == 0;}
 ...
 task body();
 if (increment_crc_error)
 p_sequencer.cfg.m_crc_error_count++;

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	20	 Mastering	Reactive	Slaves	in	UVM	

 ...
 endtask
endclass

Additional	error	injection	sequences	can	be	added	to	the	sequence	library	for	the	reactive	slave	(or	
existing	 sequences	 modified	 to	 be	 sensitive	 to	 error	 injection	 requests),	 which	 allow	 the	 slave-
response	mechanism	 to	make	use	 of	 the	 configuration’s	 error	 counters	 as	 shown	 in	 the	 example	
below.	If	an	error	request	counter	is	active	in	the	configuration	object	when	the	response	sequence	
item	 is	 generated,	 then	 error	 control	 flags	 are	 set	 in	 the	 sequence	 item	 in	 order	 to	 instruct	 the	
driver	 to	 inject	 the	 specified	 error	 into	 this	 current	 slave	 response.	 Hence	 the	 slave	 response	
containing	errors	is	reacting	to	both	scenario	based	error	injection	requests	from	the	high-level	test	
and	protocol	event	timing	controlled	by	the	DUT.	
class my_slave_response_error_seq extends uvm_sequence #(...);
 …
 virtual task body();
 forever begin
 // wait for a transaction request (get is blocking)
 p_sequencer.m_request_fifo.get(m_req);
 // generate response based on observed request and error flags
 `uvm_create(m_item)
 // randomize item
 if (!m_item.randomize() with {...})
 `uvm_error(“RNDFLD”, “randomization failed”)
 // set the error flag after randomizing
 if (p_sequencer.cfg.m_crc_error_count > 0) begin
 m_item.m_inject_crc_error = 1;
 p_sequencer.cfg.m_crc_error_count--;
 end
 // execute the sequence item on the driver
 `uvm_send(m_item);
 end
 endtask
endclass

Finally,	 the	user	 specifies	 this	 slave	 sequence	 as	 the	default	 sequence	 for	 the	 test	 in	which	 error	
injection	is	desired	and	calls	the	control	sequence	when	required	to	set	the	counters:	
class my_err_test extends uvm_test;
 ...
 my_uvc uvc_env;
 ...
 function void build_phase(...);
 super.build_phase(phase);
 ...
 uvm_config_db #(uvm_object_wrapper)::set(
 this,
 "uvc_env.slave_agent.sequencer.main_phase",
 "default_sequence",
 my_slave_response_error_seq::type_id::get());
 ...
 endfunction
 task run_phase(...);

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	21	 Mastering	Reactive	Slaves	in	UVM	

 my_control_wait_addr_seq wait_addr_seq;
 my_control_increment_error_seq error_seq;
 ...
 wait_addr_seq.start(test_env.uvc_env.slave_agent.sequencer);
 error_seq.start(test_env.uvc_env.slave_agent.sequencer);
 ...
 endtask
endclass

4.4	Bus	Topology	Considerations	
All	of	the	analysis	in	this	paper	so	far	has	focused	on	operation	of	a	single	slave	agent,	typically	in	
the	 context	 of	 response	 generation	 for	 a	 DUT	 master	 where	 there	 is	 a	 simple	 point-to-point	
connection	 between	 the	 master	 and	 the	 slave.	 However,	 none	 of	 the	 arguments	 presented	 are	
limited	to	such	simple	UVC	environments	and	can	easily	be	extended	to	cover	much	more	complex	
topologies.	In	fact	the	extension	to	complex	topologies	has	no	effect	on	the	internal	architecture	of	
the	slave	agents,	and	only	minimal	effect	on	how	we	connect	them	into	a	bigger	cluster.			

In	 bus	 protocols	 where	 there	 are	 separate	 slave	 select	 signals	 (e.g.	 AHB,	 SPI)	 or	 allocated	 slave	
addresses	 (e.g.	 I2C)	 we	 would	 strongly	 recommend	 having	 one	 agent	 per	 slave	 to	 provide	 the	
maximum	flexibility	and	control	when	creating	response	stimulus	scenarios.	With	such	topologies	
we	would	also	recommend	having	a	passive	master	agent	to	monitor	the	resolved	bus	traffic	at	the	
DUT	 interface.	 Only	 one	 scenario	 control	 agent	 for	 the	 reactive	 slaves	 is	 required,	 since	 this	 can	
subscribe	to	transactions	published	by	each	slave	agent	(i.e.	we	extend	the	control	driver	capability	
to	 subscribe	 to	 multiple	 transaction	 streams	 by	 adding	 analysis	 exports).	 A	 UVC	 environment	
supporting	multiple	reactive	slave	agents	for	a	single-master	protocol	is	shown	in	Figure	12.	

	
Figure	12	UVC	Topology	for	Multiple	Slaves	with	Single	Master	

For	multi-master	bus	protocols,	 the	requirements	 for	reactive	slaves	do	not	change,	but	there	are	
additional	 demands	 on	 the	master	 side	which	 are	 covered	 here	 for	 completeness.	 Specifically	 in	
addition	to	the	passive	master	agent	to	monitor	(check	&	cover)	traffic	at	the	DUT	master	port,	we	
require	one	or	more	alternate	active	master	agents	in	order	to	compete	with	the	DUT	for	ownership	
of	the	bus	and	a	separate	bus	monitor	to	publish	all	resolved	traffic	on	the	bus	irrespective	of	what	
each	end-point	 thinks	 is	happening.	Figure	13	shows	such	a	multi-master	bus	 topology	 for	a	UVC	
environment.	

SNUG	2016	 	 Copyright	©	2016	Verilab	&	SNUG	
	

Page	22	 Mastering	Reactive	Slaves	in	UVM	

	
Figure	13	UVC	Topology	for	Multiple	Slaves	with	Multiple	Masters	

In	 summary,	 we	 would	 recommend	 setting	 up	 your	 UVC	 structure	 to	 cover	 all	 anticipated	 bus	
topologies	 from	 single	 agent	 (for	 point-to-point)	 to	 full	 bus	 topology	 required	 by	 protocol	 (i.e.	
single	or	multiple	masters).	This	means	the	UVC	can	be	built	with:	

• 0	or	more	agents	of	each	type	(master/slave)	
• individual	control	over	active/passive	setting	of	each	agent	
• multi-master	protocols	should	provide	an	independent	bus	monitor	

5.	Conclusions	
This	paper	presented	a	discussion	on	the	differences	between	proactive	master	and	reactive	slave	
verification	components	and	demonstrated	an	architecture	that	has	been	used	by	Verilab	engineers	
for	many	 different	 projects	 and	 various	 interface	 protocols.	 The	 structural	 changes	 for	 the	 slave	
agent	 are	 minimal	 in	 order	 to	 achieve	 the	 basic	 constrained-random	 sequence-based	 response	
generation	as	a	reaction	to	DUT	traffic,	and	the	architecture	is	easily	extended	to	provide	scenario-
based	synchronization	to	specific	DUT	traffic,	test-controlled	observation	and	manipulation	of	slave	
storage	 or	 memory,	 as	 well	 as	 controlling	 error	 injection	 for	 responses	 from	 high-level	 test	
scenarios.	 The	 detailed	 content	 presented	 here	 should	 enable	 intermediate	 level	 verification	
engineers	to	get	consistent	results	producing	reactive	slave	UVCs	in	UVM,	and	provide	a	reference	
implementation	for	consideration	by	advanced	users.		

6.	References	
[1] Accellera, UVM (Universal Verification Methodology), www.accellera.org
[2] Mentor Graphics, UVM Sequences in Depth, Web Seminar, www.mentor.com
[3] J. Montesano, M. Litterick, UVM Sequence Item Based Error Injection, SNUG 2012
[4] M. Litterick, J. Montesano, T. Reddy, Mastering Reactive Slaves in UVM, SNUG 2015

