Q: I need your advice in getting started with verification with systemverilog
1 've built various projects using Verilog and they was FPGA and ASIC synthesizable. what I need now is
a road map that get me started with verification for example SVA , UVM and SV testbenches

A: That's a very broad question because the answer requires knowledge of various disciplines that can be
learned. It also requires the use of verification models whether it be a quick one-time-use model with a set
of tests or reusable and extendable models with many sets of distinct tests. I’ll provide with guidelines
and [welcome comments from this community.

My general approach in writing a model (e.g., code, document,) is to use templates or existing models as a
base. This simplifies the task significantly. It also is a good teaching tool. A plug: in all my books, many
now donated, http://systemverilog.us/v{/Cohen_Links to _papers books.pdf, I provide complete examples
with annotations in my text and figures. I was criticized by some by not being “neat”, but I find this
approach more explanatory, with little concern to “pretty”.

Understand the basics of SystemVerilog Verification:

Given that you used SV in design and simple verification models, you have a general idea of the needed
concepts. Understanding classes is a must. However, there are concepts and approaches that you need to
consider as explained below.

Given a set of requirements, write a verification plan

A verification plan is a document that explains your verification approach (e.g., transaction-based, reuse,
tools, languages, models (IP), etc) and what will be verified and covered.

My donated book Component Design by Example ... A step-step process using VHDL with UART as
vehicle https://tb.gy/9tcbhl specifies how to write: Requirement specification, Architectural plan,
Verification plan, and Documentation and delivery procedures. This may be too formal and rigorous for
some, but glancing at this approach will provide you with a model that you can construct to meet your
needs and schedules. Your verification plan should also specify the use of assertions and coverage to
address the level of testing and that requirements are met. Assertions are not necessarily SVA because
assertions are just statements that what you present/state is correct. SVA can provide statements that your
design requirement properties are correct. SVA can also provide functional coverage. SV also provides
coverage of values/states. Tools provide automatic code coverage. Tools also provide timing analysis,
metastability, fsm locking, etc. There are SO MANY things that you can put into a verification plan
document!

The testbench
I see this as a broad question because designs go through several stages of evolutions and integrations.
Generally, large designs are partitioned into smaller sections called partitions, each having its own
interface. These partitions are then integrated into the larger design entity and tested at the functional
level. Each designer, in coordination with a top-level verification engineer, is responsible to test his/her
partition. I generally recommend a quick-and-dirty approach that progresses into a more complex
verification model. My approach consists of:
1. Assertions: SVA with support logic if needed. These assertions can be written in-line with the
code or in a checker/module bound to the design.
2. Constrained-random tests: This type of tests very quickly identifies errors in your assertions,
your understanding of the requirements, and your model (the early mortally issue).
For this, I developed a template that I tune as needed. You can also add directed tests if needed.

http://systemverilog.us/vf/Cohen_Links_to_papers_books.pdf

module top;
timeunit 1lns; timeprecision 100ps;
‘include "uvm macros.svh" import uvm pkg::*;
bit clk, a, b, reset n;
default clocking @ (posedge clk); endclocking
initial forever #10 clk = !clk;
initial begin S$timeformat (-9, 0, " ns", 10); Sdisplay("%t", Srealtime); end
// Assertions here
// RTL model here: my rtl my rtll(clk, a, b);

initial begin // The test vector generation
Sdumpfile ("dump.vced"); S$dumpvars;
bit v_a, v_b, v err;
repeat (200) begin
@ (posedge clk) ;

if (!randomize(v_a, v b, v err) with {
v_a dist {1'bl := 1, 1'b0 := 1};
v b dist {1'bl := 1, 1'b0 := 2};
v_err dist {1'bl := 1, 1'b0 := 15};
1) ‘uvm_error("MYERR", "This is a randomize error");
a <=v_a;
if (v_err==0) b<=v_b; else b<=!v b;
end
#20;
Sfinish;
end
endmodule

In this model, I use uvm for the UVM severity levels. Example of a severity level in SVA:
string tID="UART ";
default clocking def cb @ (posedge clk); endclocking : def cb
ap_ LOW: assert property(a) else
‘uvm_info(tID,$sformatf("%m : error in a %b", a), UVM_LOW); // Line 9
ap MEDIUM: assert property(a) else
‘uvm_info(tID,$sformatf("%m : error in a %b", a), UVM_MEDIUM); // Line 11
ap_HIGH: assert property(a) else
‘uvm_info(tID,$sformatf("%m : error in a %b", a), UVM_HIGH); //Line 13

Transaction-based tests, quick-and-dirty

If you don’t know UVM and want to get to something closer to it and fast, you can ease into
transaction-based modeling in your partition without going UVM. This becomes a level of
modeling at a higher level than a quick-and-dirty fast test. This also applies to models where
transactions can be clearly identified, like READ, WRITE, PUSH, IDLE, etc. These transactions
can be upgraded to UVM as a later stage of design integration.

My donated book ($3, Amazon min charge) A Pragmatic Approach to VMM Adoption ... a SV
Framework for Testbenches 2007 is precursor to UVM and demonstrates by example the
application of transaction-based modeling for a FIFO.

http://System Verilog.us/vi/VMM/VMM _pdf release070506.zi
http://SystemVerilog.us/v/VMM/VMM _code release_071806.tar

For example, this code from that book can be modified by excluding the library references and

used to generate transactions.

package fifo pkg;
timeunit 1lns; timeprecision 100ps;
‘define TOP fifo tb
typedef enum {PUSH, POP, PUSH POP, IDLE, RESET} fifo scen e;
typedef enum {PUSH MODE, POP MODE} mode e;
typedef enum {PASSED, FAILED} fifo_status_e;
typedef enum {DONE GEN, DONE BFM} notification e;
parameter BIT DEPTH = 4;
parameter FULL = 16;
parameter WIDTH = 32;
typedef logic [WIDTH-1 : 0] word t;

http://systemverilog.us/vf/VMM/VMM_pdf_release070506.zip
http://systemverilog.us/vf/VMM/VMM_code_release_071806.tar

typedef word t [0 : (2**BIT DEPTH-1)] buffer t;
endpackage : fifo pkg

class Fifo_xactn; // extends vmm_data;
rand fifo scen e kind;
rand word t data; // data to push
rand bit [7:0] idle cycles;
rand bit [7:0] reset cycles;
time xactn time;
constraint cst data {
data < 1024; }

constraint cst idle {

idle cycles inside {[1:3]1}; }
constraint cst reset {

reset cycles inside {[1:10]}; }

constraint cst xact kind {
kind dist {

PUSH := 400,
POP := 300,
PUSH _POP :=200,
IDLE := 30,
RESET := 10

b
} // cst xact kind
endclass:Fifo xactn

function string Fifo xactn::psdisplay(string prefix);
S$Ssformat (psdisplay,
"%s #%0d.%0d.%0d Fifo Xaction %s ",
prefix, this.scenario id, this.stream id, this.data id,

this.kind.name ()) ;
if (this.kind == IDLE)
S$sformat (psdisplay, "%s Cycles %0d ", psdisplay, this.idle cycles);
if (this.kind == RESET)

S$sformat (psdisplay, "%s Cycles %0d ", psdisplay, this.reset cycles);
endfunction : psdisplay
You can then instantiate the class, randomize it, and do something like the following to call tasks
to drive the DUT.
case (fifo xactn 0.kind)
PUSH
begin
this.push task(fifo xactn 0.data);
end
POP
begin
this.pop_ task();
End

Transaction-based tests, a la UVM

For this, I would start with a template or a previous working model and tune it to your needs.

There are books and free material on UVM. 1 don’t consider myself an expert in this field as I
concentrated on assertions and education. However, I strongly recommend my co-author Srinivasan
Venkataramanan, CEO & Co-Founder at VerifWorks. He is an expert in many disciplines, from chip design
(from start to release to fab), to many computing languages, to PSL, SVA, UVM, and tool construction.
https://www.linkedin.com/in/svenka3/ Also see his LinkedIn posts.

https://verifworks.com/ UVM worldwide consulting, Low Power UPF consulting Intellectual
Properties (IP) primarily the verification oriented ones (VIP, Checker/Assertion IPs — CIP,
Language testsuites etc.)

https://www.linkedin.com/in/svenka3/
https://verifworks.com/

5. Learning SVA
There are many books and free material on SVA, including mine: SVA Handbook 4th Edition,
2016 ISBN 978-1518681448 https://tb.gy/4abc8v
You’ll find that most assertions are simple in formation with a simple antecedent and a simple
consequent (e.g., @ (posedge clk) S$rose(reqg) |-> ##[1:5] ack;). However, there are
many concepts that need to be understood. Over the years, aside from updated versions of my
book, I also wrote several papers on the subject. Below is a list of the papers; I recommend that
you do study them as they go deep into the language and its nuance applications.

1 Understanding the SVA Engine Using the Fork-Join Model

https://verificationacademy.com/verification-horizons/july-2020-volume-16-issue-2
Using a model, the paper addresses important concepts about attempts and threads. Emphasizes the
total independence of attempts.

Important concepts on EXPRESSING REQUIREMENTS,
Terminology, threads in ranges and repeats in antecedents, multiple antecedents.

3 | Reflections on Users’ Experiences with SVA, part 2
https://verificationacademy.com/verification-horizons/july-2022-volume-18-issue-2/reflections-on-
users-experiences-with-sva-part-2

Addresses the usage of these four relationship operators: throughout, until, ntersect,
implies operators

4 | Understanding Assertion Processing Within a Time Step
https://systemverilog.us/vf/Understanding assertion processing.pdf
This paper goes into detail about how evaluation regions should be handled by a simulator as desc

6 | SVA Package: Dynamic and range delays and repeats
https://rb.gy/a89jlh
Provides a library and model solutions

7 | SUPPORT LOGIC AND THE always PROPERTY

Provides examples of support logi?: needed for certain types of requirements where the strict use of
only SVA does not cover.

8 | SVA in a UVM Class-based Environmen
https://verificationacademy.com/verification-horizons/fFebruary-2013-volume-9-issue-1/SVA-in-a-
UVM-Class-based-Environment

Explains how SVA complements a UVM class-based environment. It also demonstrates how the
UVM severity levels can be used in all SVA action blocks instead of the SystemVerilog native
severity levels.

https://rb.gy/4abc8v
https://verificationacademy.com/verification-horizons/july-2020-volume-16-issue-2
https://verificationacademy.com/verification-horizons/march-2022-volume-18-issue-1/reflections-on-users-experiences-with-systemverilog-assertions-sva
https://verificationacademy.com/verification-horizons/march-2022-volume-18-issue-1/reflections-on-users-experiences-with-systemverilog-assertions-sva
https://verificationacademy.com/verification-horizons/july-2022-volume-18-issue-2/reflections-on-users-experiences-with-sva-part-2
https://verificationacademy.com/verification-horizons/july-2022-volume-18-issue-2/reflections-on-users-experiences-with-sva-part-2
https://systemverilog.us/vf/Understanding_assertion_processing.pdf
https://verificationacademy.com/verification-horizons/december-2022-volume-18-issue-3/understanding-and-using-immediate-assertions
https://verificationacademy.com/verification-horizons/december-2022-volume-18-issue-3/understanding-and-using-immediate-assertions
https://rb.gy/a89jlh
http://systemverilog.us/vf/support_logic_always.pdf
https://verificationacademy.com/verification-horizons/february-2013-volume-9-issue-1/SVA-in-a-UVM-Class-based-Environment
https://verificationacademy.com/verification-horizons/february-2013-volume-9-issue-1/SVA-in-a-UVM-Class-based-Environment

