
Better Late Than Never
Collecting Coverage from Zeroes and Ones

Rich Edelman, Siemens EDA, Fremont, CA US
Tsung-Yu Tsai, Siemens Taiwan, HsinChu City, Taiwan

Optional company logo(s) only at title page

Background
• Files of zeroes and ones

• ASCII – expected and actual
• VCD
• qwave.db
• WLF
• other

• Coverage
• Toggle
• Block
• FSM
• Conditional
• Functional

qwave.db

VCD

Concept – Imagination
• Coverage wasn’t modeled

• Management decision - No time in the schedule – maybe it is an FPGA
• But we’d like to know about some of the coverage
• Build a Verilog instance tree that has names like the real design

• This makes the coverage report easy to read
• At each instance, populate it with the “sampled value datatypes” (reg[3:0]valueB)

• Build a functional coverage model for the variables.
• coverpoint, bins, crosses

• Now, assign those zeroes and ones to the variables in turn. Collecting
coverage

Conceptual Flow

10 010101010110
20 101011101011
30 101010111111
40 000001110001

Simulation of
coverage
models

The File Reader
• A “global” variable to hold

the line of bits
• Get the filename
• Open the file using $fopen

module top();
// A "global" variable to hold the line
// JUST read. The DUT-coverage-model uses
// this to assign the parts.
bit [1023:0] vector;

initial begin
bit [1023:0] my_values;
string filename;
longint my_time, now;
int d;

integer fd, code;
now = 0;

if (!$value$plusargs("i=%s", filename))
filename = "testfile.txt";

$display("...processing '%s'", filename);

// Open the "values" file
fd = $fopen(filename, "r");

The File Reader
• Read the whole file
• Use $fscanf

• Read the time
• Read the bit vector

• Update the current
time

• Apply the bits to the
“global” holding bit
vector

// Loop through each line, one at a time.
// 1. Update the time
// 2. Apply the values
// 3. Repeat for each line
forever begin

// Read a line
code = $fscanf(fd, "%d %b", my_time, my_values);
if (code == -1) begin
$finish(2);

end
// Update time
d = my_time - now;
#d;
now = now + d;

// Apply the values to the global
vector = my_values;

end
end

endmodule

Assigning the bits

module M();
ABC abc0();
ABC abc1();

// When the intermediate vector changes, assign
// its contents to the underlying values – deep
// in the hierarchy or on the top
always @(top.vector) begin

$display("@%t: Vector=%20b", $time, top.vector);
{
abc0.a.valueA, abc0.b.valueB, abc0.c.valueC,
abc1.a.valueA, abc1.b.valueB, abc1.c.valueC

} = top.vector;
end

endmodule

abc0.a.valueA[4:0],
abc0.b.valueB[4:0],
abc0.c.valueC[2:0]

abc1.a.valueA[4:0],
abc1.b.valueB[4:0],
abc1.c.valueC[2:0]

A Simple Functional Coverage Model
• Construct a coverage object ‘cgi’.
• Write a coverage model. Simple in this

case.
• Inside the module A(), a value ‘valueA’.
• valueA got assigned by the

concatenation above.
• Once valueA changes, trigger a call to

sample().

module A();
reg [4:0] valueA;

covergroup cg;
cp_valueA: coverpoint valueA;

endgroup

cg cgi = new();

always @(valueA) begin
$display("@%t: %m.valueA=%20b",
$time, valueA);

cgi.sample();
end

endmodule

Structs too
• Exactly the same concepts.
• Assign, trigger, call sample()

module B();
typedef struct packed {
reg [1:0] status;
reg intr;
reg [1:0] count;

} csr_reg_t;
csr_reg_t valueB;

covergroup cg;
status: coverpoint valueB.status;
intr: coverpoint valueB.intr;
count: coverpoint valueB.count;

endgroup

cg cgi = new();

always @(valueB) begin
cgi.sample();

end
endmodule

module B();
reg [4:0] valueB;

covergroup cg;
cp_valueB: coverpoint valueB;

endgroup

cg cgi = new();

always @(valueB) begin
cgi.sample();

end
endmodule

Build a covergroup appropriate for the data
type – bit vector or struct – for example

Coverage
• Bit Vector model
• Struct model

Bit Vector

Struct

Interesting beyond functional coverage
• This is our “regular” model
• A value is going to be assigned

as read from the file
• A covergroup was designed
• cgi.sample() is triggered

• What other coverage can be
collected?

module C();
reg [2:0] valueC;

covergroup cg;
cp_valueC: coverpoint valueC;

endgroup
cg cgi = new();
always @(valueC) begin
cgi.sample();

end
endmodule

What about other kinds of coverage?
• Write a “fake” FSM in the

‘module C’

• It gets recognized by the
compiler / optimizer

• But it never operates – the states
are assigned

• Notice the ‘fake_clk”
• it doesn’t run

module C();
reg [2:0] valueC;
reg clk, fake_clk;

always @(posedge fake_clk) begin
case(valueC)
ZERO: valueC <= ONE;
ONE: valueC <= TWO;
TWO: valueC <= THREE;

THREE: valueC <= FOUR;
FOUR: valueC <= FIVE;
FIVE: valueC <= SIX;
SIX: valueC <= SEVEN;

SEVEN: valueC <= ZERO;
endcase

end
endmodule

Interesting beyond functional coverage 1
• Since the state machine doesn’t “run”

• Block / Statement coverage doesn’t register

Interesting beyond functional coverage 2
• ‘valueC’ is being

assigned
• the state and transition

coverage is collected

module C();
reg [2:0] valueC;
reg clk, fake_clk;

always @(posedge fake_clk) begin
case(valueC)
ZERO: valueC <= ONE;
ONE: valueC <= TWO;
TWO: valueC <= THREE;

THREE: valueC <= FOUR;
FOUR: valueC <= FIVE;
FIVE: valueC <= SIX;
SIX: valueC <= SEVEN;

SEVEN: valueC <= ZERO;
endcase

end
endmodule

Interesting beyond functional coverage 3
• An always block that operates expressions but does NOT

change the “values” that are assigned from the file
module C();
reg [2:0] valueC;
reg clk;
int count;

always begin
#1; clk = 0;
#1; clk = 1;

end

always @(posedge clk) begin
if (valueC == ONE) begin
count++;

end
else if (valueC == TWO) begin
count--;

end
else
count = 13;

end
endmoduleThe expressions and branches and lines can be covered –

they are conditioned with ‘valueC’ from the file assigns

Coverage Roll-up
• Not all the coverage categories are “valid”
• It “depends”

• Covergroups/Toggle/FSM – all good
• Block/Branch – depends on the module/instance

Conclusion
• Coverage is a useful tool for measuring “completeness”
• Even after the fact, a file of zeroes and ones can be used to

collect coverage
• Have all the legal values been used
• Have all the legal “crosses” between two variables been used

• Building a small structure helps with naming conventions and
reporting

• Keep the system simple
• Explore more kinds of coverage that might apply to this scheme

Questions

• Source code available – contact rich.edelman@siemens.com

